Exportar registro bibliográfico


Metrics:

Isolation, synthesis and bioactivity studies of phomactin terpenoids (2018)

  • Authors:
  • USP affiliated authors: DEFLON, VICTOR MARCELO - IQSC ; BERLINCK, ROBERTO GOMES DE SOUZA - IQSC
  • Unidade: IQSC
  • DOI: 10.1038/s41557-018-0084-x
  • Assunto: QUÍMICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41557-018-0084-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      KURODA, Yusuke; NICACIO, Karen J; SILVA JÚNIOR, Ildefonso Alves da; et al. Isolation, synthesis and bioactivity studies of phomactin terpenoids. Nature Chemistry, London, Nature Publishing Group, v. 10, p. 938-945, 2018. Disponível em: < https://www.nature.com/articles/s41557-018-0084-x > DOI: 10.1038/s41557-018-0084-x.
    • APA

      Kuroda, Y., Nicacio, K. J., Silva Júnior, I. A. da, Leger, P. R., Chang, S., Gubiani, J. R., et al. (2018). Isolation, synthesis and bioactivity studies of phomactin terpenoids. Nature Chemistry, 10, 938-945. doi:10.1038/s41557-018-0084-x
    • NLM

      Kuroda Y, Nicacio KJ, Silva Júnior IA da, Leger PR, Chang S, Gubiani JR, Deflon VM, Nagashima N, Rode A, Blackford K, Ferreira AG, Sette LD, Williams DE, Andersen RJ, Jancar S, Berlinck RG de S, Sarpong R. Isolation, synthesis and bioactivity studies of phomactin terpenoids [Internet]. Nature Chemistry. 2018 ;10 938-945.Available from: https://www.nature.com/articles/s41557-018-0084-x
    • Vancouver

      Kuroda Y, Nicacio KJ, Silva Júnior IA da, Leger PR, Chang S, Gubiani JR, Deflon VM, Nagashima N, Rode A, Blackford K, Ferreira AG, Sette LD, Williams DE, Andersen RJ, Jancar S, Berlinck RG de S, Sarpong R. Isolation, synthesis and bioactivity studies of phomactin terpenoids [Internet]. Nature Chemistry. 2018 ;10 938-945.Available from: https://www.nature.com/articles/s41557-018-0084-x

    Referências citadas na obra
    Maier, M. E. Structural revisions of natural products by total synthesis. Nat. Prod. Rep. 26, 1105–1124 (2009).
    Wilson, R. M. & Danishefsky, S. J. Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J. Org. Chem. 71, 8329–8351 (2006).
    Maier, M. E. Design and synthesis of analogues of natural products. Org. Biomol. Chem. 13, 5302–5343 (2015).
    Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).
    Sugano, M. et al. Phomactin A: a novel PAF antagonist from a marine fungus Phoma sp. J. Am. Chem. Soc. 113, 5463–5464 (1991).
    Sugano, M. et al. Phomactins, novel PAF antagonists from marine fungus Phoma sp. J. Org. Chem. 59, 564–569 (1994).
    Sugano, M. et al. Phomactin E, F, and G: new phomactin-group PAF antagonists from a marine fungus Phoma sp. J. Antibiot. 48, 1188–1190 (1995).
    Chu, M. et al. A novel class of platelet activating factor antagonists from Phoma sp. J. Antibiot. 46, 554–563 (1993).
    Koyama, K. et al. Phomactin H, a novel diterpene from an unidentified marine-derived fungus. Tetrahedron Lett. 45, 6947–6948 (2004).
    Ishino, M. et al. Phomactin I, 13-epi-phomactin I, and phomactin J, three novel diterpenes from a marine-derived fungus. Tetrahedron 66, 2594–2597 (2010).
    Ishino, M. et al. Phomactins K–M, three novel phomactin-type diterpenes from a marine-derived fungus. Tetrahedron 68, 8572–8576 (2012).
    Ishino, M. et al. Three novel phomactin-type diterpenes from a marine-derived fungus. Tetrahedron Lett. 57, 4341–4344 (2016).
    Passarini, M. R. Z., Santos, C., Lima, N., Berlinck, R. G. S. & Sette, L. D. Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Arch. Microbiol. 195, 99–111 (2013).
    Goldring, W. P. D. & Pattenden, G. The phomactins. A novel group of terpenoid platelet activating factor antagonists related biogenetically to the taxanes. Acc. Chem. Res. 39, 354–361 (2006).
    Prescott, S. M., Zimmerman, G. A., Stafforini, D. M. & McIntyre, T. M. Platelet-activating factor and related lipid mediators. Annu. Rev. Biochem. 69, 419–445 (2000).
    Onuchic, A. C. et al. Expression of PAFR as part of a pro-survival response to chemotherapy: a novel target for combination therapy in melanoma. Mediat. Inflamm. 2012, 175408 (2012).
    Sahu, R. P. et al. Radiation therapy generates platelet-activating factor agonists. Oncotarget 7, 20788–20800 (2016).
    Ciesielski, J. & Frontier, A. The phomactin natural products from isolation to total synthesis: a review. Org. Prep. Proced. Int 46, 214–251 (2014).
    Goldring, W. P. D.., & Pattenden, G.. A total synthesis of phomactin. Chem. Commun. 2002, 1736–1737 (2002).
    Goldring, W. P. D. & Pattenden, G. Total synthesis of (±)-phomactin G, a platelet activating factor antagonist from the marine fungus Phoma sp. Org. Biomol. Chem. 2, 466–473 (2004).
    Huang, J., Wu, C. & Wulff, W. D. Total synthesis of (±)-phomactin B2 via an intramolecular cyclohexadienone annulation of a chromium carbene complex. J. Am. Chem. Soc. 129, 13366–13367 (2007).
    Tang, Y., Cole, K. P., Buchanan, G. S., Li, G. & Hsung, R. P. Total synthesis of phomactin A. Org. Lett. 11, 1591–1594 (2009).
    Miyaoka, H., Saka, Y., Miura, S. & Yamada, Y. Total synthesis of phomactin D. Tetrahedron Lett. 37, 7107–7110 (1996).
    Mohr, P. J. & Halcomb, R. L. Total synthesis of (+)-phomactin A using a B-alkyl Suzuki macrocyclization. J. Am. Chem. Soc. 125, 1712–1713 (2003).
    Tokiwano, T., Fukushi, E., Endo, T. & Oikawa, H. Biosynthesis of phomactins: common intermediate phomactatriene and taxadiene. Chem. Commun. 1324–1325 (2004).
    Tokiwano, T. et al. Proposed mechanism for diterpene synthases in the formation of phomactatriene and taxadiene. Org. Biomol. Chem. 3, 2713–2722 (2005).
    Masarwa, A., Weber, M. & Sarpong, R. Selective C–C and C–H bond activation/cleavage of pinene derivatives: synthesis of enantiopure cyclohexenone scaffolds and mechanistic insights. J. Am. Chem. Soc. 137, 6327–6334 (2015).
    Bermejo, F. A. et al. Ti(iii)-promoted cyclizations. Application to the synthesis of (E)-endo-bergamoten-12-oic acids. Moth oviposition stimulants isolated from Lycopersicon hirsutum. Tetrahedron 62, 8933–8942 (2002).
    Murakami, M., Makino, M., Ashida, S. & Matsuda, T. Construction of carbon frameworks through β-carbon elimination mediated by transition metals. Bull. Chem. Soc. Jpn 79, 1315–1321 (2006).
    Cramer, N. & Seiser, T. β-Carbon elimination from cyclobutanols: a clean access to alkylrhodium intermediates bearing a quaternary stereogenic center. Synlett 449–460 (2011).
    Lipshutz, B. H. & Miller, T. A. Deprotection of ‘SEM’ ethers: a convenient, general procedure. Tetrahedron Lett. 30, 7149–7152 (1989).
    Nicolaou, K. C. & Harrison, S. T. Total synthesis of abyssomicin C and atrop-abyssomicin C. Angew. Chem. Int. Ed. 45, 3256–3260 (2006).
    Catino, A. J., Forslund, R. E. & Doyle, M. P. Dirhodium(ii) caprolactamate: an exceptional catalyst for allylic oxidation. J. Am. Chem. Soc. 126, 13622–13623 (2004).
    Honda, T. & Mizutani, H. Regioselective ring-opening of 2,3-epoxy alcohols with tetramethylammonium triacetoxyborohydride. Heterocycles 48, 1753–1757 (1998).
    Evans, D. A., Chapman, K. T. & Carreira, E. M. Directed reduction of β-hydroxy ketones employing tetramethylammonium tracetoxyborohydride. J. Am. Chem. Soc. 110, 3560–3578 (1988).
    Jancar, S. & Chammas, R. PAF receptor and tumor growth. Curr. Drug Targets 15, 982–987 (2014).
    Bussolati, B. et al. PAF produced by human breast cancer cells promotes migration and proliferation of tumor cells and neo-angiogenesis. Am. J. Pathol. 157, 1713–1725 (2000).
    Chan, F. K.-M., Moriwaki, K. & De Rosa, M. J. in Immune Homeostasis. Methods and Protocols Vol. 979 (eds Snow, A. & Lenardo, M.) 65–70 (Humana, Totowa, 2013).
    da Silva-Jr, I. A., Chammas, R., Lepique, A. P. & Jancar, S. Platelet-activating factor (PAF) receptor as a promising target for cancer cell repopulation after radiotherapy. Oncogenesis 6, e296 (2017).
    Rios, F. J. O., Koga, M. M., Ferracini, M. & Jancar, S. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS ONE 7, e36632 (2012).
    Huang, Q. et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 17, 860–866 (2011).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020