Exportar registro bibliográfico


Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats (2017)

  • Authors:
  • Unidade: ICB
  • DOI: 10.1038/s41598-017-05984-9
  • Assunto: FISIOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-017-05984-9 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GOMES, Paula Magalhães; SÁ, Renato Willian Martins; AGUIAR, Giovana Lopes; et al. Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats. Scientific Reports, London, Nature Publishing Group, v. 7, n. 1, p. 1-14, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-05984-9 > DOI: 10.1038/s41598-017-05984-9.
    • APA

      Gomes, P. M., Sá, R. W. M., Aguiar, G. L., Paes, M. H. S., Alzamora, A. C., Lima, W. G., et al. (2017). Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats. Scientific Reports, 7( 1), 1-14. doi:10.1038/s41598-017-05984-9
    • NLM

      Gomes PM, Sá RWM, Aguiar GL, Paes MHS, Alzamora AC, Lima WG, Oliveira LB de, Stocker SD, Antunes VR, Cardoso LM. Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats [Internet]. Scientific Reports. 2017 ; 7( 1): 1-14.Available from: http://dx.doi.org/10.1038/s41598-017-05984-9
    • Vancouver

      Gomes PM, Sá RWM, Aguiar GL, Paes MHS, Alzamora AC, Lima WG, Oliveira LB de, Stocker SD, Antunes VR, Cardoso LM. Chronic high-sodium diet intake after weaning lead to neurogenic hypertension in adult Wistar rats [Internet]. Scientific Reports. 2017 ; 7( 1): 1-14.Available from: http://dx.doi.org/10.1038/s41598-017-05984-9

    Referências citadas na obra
    Ha, S. K. Dietary salt intake and hypertension. Electrolyte Blood Press 12, 7–18, doi: 10.5049/EBP.2014.12.1.7 (2014).
    WHO (World Health Organization (WHO), Geneva, 2012).
    Rodrigues, S. L. et al. Relationship between salt consumption measured by 24-h urine collection and blood pressure in the adult population of Vitoria (Brazil). Brazilian journal of medical and biological research=Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica… [et al.] 48, 728–735, doi: 10.1590/1414-431X20154455 (2015).
    Ambard, L. & Beaujard, E. Causes de l’ hypertension arterielle. Arch Gen Med 1, 13 (1904).
    Dahl, L. K., Leitl, G. & Heine, M. Influence of dietary potassium and sodium/potassium molar ratios on the development of salt hypertension. The Journal of experimental medicine 136, 318–330 (1972).
    Huang, B. S., Van Vliet, B. N. & Leenen, F. H. Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. American journal of physiology. Heart and circulatory physiology 287, H1160–1166, doi: 10.1152/ajpheart.00126.2004 (2004).
    Adams, J. M., Madden, C. J., Sved, A. F. & Stocker, S. D. Increased dietary salt enhances sympathoexcitatory and sympathoinhibitory responses from the rostral ventrolateral medulla. Hypertension 50, 354–359, doi: 10.1161/HYPERTENSIONAHA.107.091843 (2007).
    Gu, J.-W. W., Bailey, A. P., Tan, W., Shparago, M. & Young, E. Long-term High Salt Diet Causes Hypertension and Decreases Renal Expression of Vascular Endothelial Growth Factor in Sprague-Dawley Rats. Journal of the American Society of Hypertension: JASH 2, 275–285, doi: 10.1016/j.jash.2008.03.001 (2008).
    Koga, Y. et al. High salt intake enhances blood pressure increase during development of hypertension via oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertension research: official journal of the Japanese Society of Hypertension 31, 2075–2083, doi: 10.1291/hypres.31.2075 (2008).
    Guild, S. J., McBryde, F. D., Malpas, S. C. & Barrett, C. J. High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study. Hypertension 59, 614–620, doi: 10.1161/HYPERTENSIONAHA.111.180885 (2012).
    Huysse, J. W., Amin, M., Yang, B. & Leenen, F. H. H. Salt-induced hypertension in a mouse model of Liddle syndrome is mediated by epithelial sodium channels in the brain. Hypertension 60, 691–696, doi: 10.1161/HYPERTENSIONAHA.112.193045 (2012).
    Moreira, M. C. S. et al. High sodium intake during postnatal phases induces an increase in arterial blood pressure in adult rats. British Journal of Nutrition 112, 1923–1932, doi: 10.1017/s0007114514002918 (2014).
    Averina, V. A., Othmer, H. G., Fink, G. D. & Osborn, J. W. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach. J Physiol 590, 5975–5992, doi: 10.1113/jphysiol.2012.228619 (2012).
    Averina, V. A., Othmer, H. G., Fink, G. D. & Osborn, J. W. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis. The Journal of physiology 593, 3065–3075, doi: 10.1113/jphysiol.2014.278317 (2015).
    King, A. J., Osborn, J. W. & Fink, G. D. Splanchnic circulation is a critical neural target in angiotensin II salt hypertension in rats. Hypertension 50, 547–556, doi: 10.1161/HYPERTENSIONAHA.107.090696 (2007).
    Veelken, R. et al. Impaired cardiovascular reflexes precede deoxycorticosterone acetate-salt hypertension. Hypertension 24, 564–570 (1994).
    Ribeiro, N., Panizza Hdo, N., Santos, K. M., Ferreira-Neto, H. C. & Antunes, V. R. Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 309, R1369–1379, doi: 10.1152/ajpregu.00312.2015 (2015).
    Osborn, J. W., Provo, B. J., Montana, J. S. & Trostel, K. A. Salt-sensitive hypertension caused by long-term alpha-adrenergic blockade in the rat. Hypertension (Dallas, Tex.: 1979) 21, 995–999, doi: 10.1161/01.HYP.21.6.995 (1993).
    Guo, L. et al. High salt-diet reduces SLC14A1 gene expression in the choroid plexus of Dahl salt sensitive rats. Biochem Biophys Res Commun 461, 254–259, doi: 10.1016/j.bbrc.2015.04.010 (2015).
    Osborn, J. W., Collister, J. P. & Guzman, P. Effect of peripheral sympathetic nerve dysfunction on salt sensitivity of arterial pressure. Clinical and experimental pharmacology & physiology 35, 273–279, doi: 10.1111/j.1440-1681.2007.04827.x (2008).
    Osborn, J. W. & Fink, G. D. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat. Experimental physiology 95, 61–68, doi: 10.1113/expphysiol.2008.046326 (2010).
    Osborn, J. W., Fink, G. D. & Kuroki, M. T. Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Current hypertension reports 13, 221–228, doi: 10.1007/s11906-011-0188-9 (2011).
    Guyenet, P. G. The sympathetic control of blood pressure. Nat.Rev.Neurosci. 7, 335–346 (2006).
    Osborn, J. W., Hendel, M. D., Collister, J. P., Ariza-Guzman, P. A. & Fink, G. D. The role of the subfornical organ in angiotensin II-salt hypertension in the rat. Experimental physiology 97, 80–88, doi: 10.1113/expphysiol.2011.060491 (2012).
    Osborn, J. W., Olson, D. M., Guzman, P., Toney, G. M. & Fink, G. D. The neurogenic phase of angiotensin II-salt hypertension is prevented by chronic intracerebroventricular administration of benzamil. Physiological reports 2, doi: 10.1002/phy2.245 (2014).
    Doyle, A. E. & Smirk, F. H. The neurogenic component in hypertension. Circulation 12, 543–552 (1955).
    Huang, B. S., Veerasingham, S. J. & Leenen, F. H. Brain “ouabain,” ANG II, and sympathoexcitation by chronic central sodium loading in rats. The American journal of physiology 274, H1269–1276 (1998).
    Stocker, S. D., Lang, S. M., Simmonds, S. S., Wenner, M. M. & Farquhar, W. B. Cerebrospinal Fluid Hypernatremia Elevates Sympathetic Nerve Activity and Blood Pressure via the Rostral Ventrolateral Medulla. Hypertension (Dallas, Tex.: 1979) 66, 1184–1190, doi: 10.1161/HYPERTENSIONAHA.115.05936 (2015).
    De Luca Junior, L. A. M. J. V. & Johnson, A. K. Neurobiology of Body Fluid Homeostasis: Transduction and Integration Vol. 1 336 (CRC Press, 2013).
    Ufnal, M., Drapala, A., Sikora, M. & Zera, T. Early high-sodium solid diet does not affect sodium intake, sodium preference, blood volume and blood pressure in adult Wistar-Kyoto rats. The British journal of nutrition 106, 292–296 (2011).
    Guyton, A. C., Coleman, T. G. & Cowley, A. W. Arterial pressure regulation: overriding dominance of the kidneys in long-term regulation and in hypertension. The American journal of … (1972).
    Adams, J. M., McCarthy, J. J. & Stocker, S. D. Excess dietary salt alters angiotensinergic regulation of neurons in the rostral ventrolateral medulla. Hypertension 52, 932–937, doi: 10.1161/HYPERTENSIONAHA.108.118935 (2008).
    Sved, A. F., Cano, G. & Card, J. P. Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clinical and experimental pharmacology & physiology 28, 115–119 (2001).
    Collister, J. P., Olson, M. K., Nahey, D. B., Vieira, A. A. & Osborn, J. W. OVLT lesion decreases basal arterial pressure and the chronic hypertensive response to AngII in rats on a high-salt diet. Physiological reports 1, doi: 10.1002/phy2.128 (2013).
    Akselrod, S. et al. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981).
    Malliani, A. The Pattern of Sympathovagal Balance Explored in the Frequency Domain. News Physiol Sci 14, 111–117 (1999).
    Malliani, A., Pagani, M., Lombardi, F. & Cerutti, S. Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 482–492 (1991).
    Goldstein, D. S., Bentho, O., Park, M. Y. & Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental physiology 96, 1255–1261, doi: 10.1113/expphysiol.2010.056259 (2011).
    Allen, A. M. et al. In Handbook of Chemical Neuroanatomy Vol. 16 (eds Quirion, R., Bjorklund, A. & Hokfelt, T.) 79–124 (Elsevier, 2000).
    McKinley, M. J. et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 35, 901–918 (2003).
    Noda, M. & Hiyama, T. Y. Sodium sensing in the brain. Pflugers Archiv: European journal of physiology 467, 465–474, doi: 10.1007/s00424-014-1662-4 (2015).
    Shi, P. et al. Intra-carotid hyperosmotic stimulation increases Fos staining in forebrain organum vasculosum laminae terminalis neurones that project to the hypothalamic paraventricular nucleus. The Journal of physiology 586, 5231–5245, doi: 10.1113/jphysiol.2008.159665 (2008).
    Stocker, S. D., Osborn, J. L. & Carmichael, S. P. Forebrain osmotic regulation of the sympathetic nervous system. Clinical and experimental pharmacology & physiology 35, 695–700, doi: 10.1111/j.1440-1681.2007.04835.x (2008).
    Toney, G. M., Chen, Q. H., Cato, M. J. & Stocker, S. D. Central osmotic regulation of sympathetic nerve activity. Acta Physiologica Scandinavica 177, 43–55, doi: 10.1046/j.1365-201X.2003.01046.x (2003).
    Toney, G. M. & Stocker, S. D. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J Physiol 588, 3375–3384, doi: 10.1113/jphysiol.2010.191940 (2010).
    Vivas, L., Chiaraviglio, E. & Carrer, H. F. Rat organum vasculosum laminae terminalis in vitro: responses to changes in sodium concentration. Brain Res 519, 294–300 (1990).
    King, A. J. & Fink, G. D. Chronic low-dose angiotensin II infusion increases venomotor tone by neurogenic mechanisms. Hypertension 48, 927–933, doi: 10.1161/01.HYP.0000243799.84573.f8 (2006).
    Titze, J. & Machnik, A. Sodium sensing in the interstitium and relationship to hypertension. Current opinion in nephrology and hypertension 19, 385–392, doi: 10.1097/MNH.0b013e32833aeb3b (2010).
    Nakamura, K. & Cowley, A. W. Jr. Sequential changes of cerebrospinal fluid sodium during the development of hypertension in Dahl rats. Hypertension 13, 243–249 (1989).
    Kawano, Y. et al. Sodium and noradrenaline in cerebrospinal fluid and blood in salt-sensitive and non-salt-sensitive essential hypertension. Clinical and experimental pharmacology & physiology 19, 235–241 (1992).
    Brown, P. D., Davies, S. L., Speake, T. & Millar, I. D. Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129, 957–970, doi: 10.1016/j.neuroscience.2004.07.003 (2004).
    Nikpey, E. et al. High-Salt Diet Causes Osmotic Gradients and Hyperosmolality in Skin Without Affecting Interstitial Fluid and Lymph. Hypertension, Hypertensionaha 116, 08539, doi: 10.1161/hypertensionaha.116.08539 (2017).
    Cardoso, L. M. et al. Cardiovascular responses to hydrogen peroxide into the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 297, R462–469, doi: 10.1152/ajpregu.90796.2008 (2009).
    Lauar, M. R. et al. Inhibition of central angiotensin II-induced pressor responses by hydrogen peroxide. Neuroscience 171, 524–530, doi: 10.1016/j.neuroscience.2010.08.048 (2010).
    Soares, E. R. et al. Cardiac and renal effects induced by different exercise workloads in renovascular hypertensive rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica… [et al.] 44, 573–582 (2011).
    Locatelli, J. et al. Swimming training promotes cardiac remodeling and alters the expression of mRNA and protein levels involved in calcium handling in hypertensive rats. Life Sci 117, 67–74, doi: 10.1016/j.lfs.2014.09.024 (2014).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020