Exportar registro bibliográfico


Metrics:

Alpha 2 Na+,K+-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells (2017)

  • Authors:
  • USP affiliated authors: LIMA, LARISSA DE SÁ - ICB ; IWASHE, ELISA MITIKO KAWAMOTO - ICB ; SCAVONE, CRISTOFORO - ICB
  • Unidade: ICB
  • DOI: 10.1038/s41598-017-05075-9
  • Assunto: FARMACOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-017-05075-9 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      KINOSHITA, Paula F.; YSHII, Lidia M.; ORELLANA, Ana Maria M.; et al. Alpha 2 Na+,K+-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells. Scientific Reports, London, Nature Publishing Group, v. 7, n. 1, p. 4894, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-05075-9 > DOI: 10.1038/s41598-017-05075-9.
    • APA

      Kinoshita, P. F., Yshii, L. M., Orellana, A. M. M., Paixão, A. G., Vasconcelos, A. R., Lima, L. de S., et al. (2017). Alpha 2 Na+,K+-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells. Scientific Reports, 7( 1), 4894. doi:10.1038/s41598-017-05075-9
    • NLM

      Kinoshita PF, Yshii LM, Orellana AMM, Paixão AG, Vasconcelos AR, Lima L de S, Kawamoto EM, Scavone C. Alpha 2 Na+,K+-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells [Internet]. Scientific Reports. 2017 ; 7( 1): 4894.Available from: http://dx.doi.org/10.1038/s41598-017-05075-9
    • Vancouver

      Kinoshita PF, Yshii LM, Orellana AMM, Paixão AG, Vasconcelos AR, Lima L de S, Kawamoto EM, Scavone C. Alpha 2 Na+,K+-ATPase silencing induces loss of inflammatory response and ouabain protection in glial cells [Internet]. Scientific Reports. 2017 ; 7( 1): 4894.Available from: http://dx.doi.org/10.1038/s41598-017-05075-9

    Referências citadas na obra
    Skou, J. C. & Esmann, M. The Na,K-ATPase. J. Bioenerg. Biomembr. 24, 249–261 (1992).
    Gloor, S. M. Relevance of Na,K-ATPase to local extracellular potassium homeostasis and modulation of synaptic transmission. FEBS Lett. 412, 1–4 (1997).
    Kaplan, J. H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535 (2002).
    Sweadner, K. J. Isozymes of the Na+/K+-ATPase. Biochim. Biophys. Acta. 988, 185–220 (1989).
    Blanco, G. & Mercer, R. W. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am. J. Physiol. 275, 633–650 (1998).
    Blanco, G., Melton, R. J., Sánchez, G. & Mercer, R. W. Functional characterization of a testes-specific alpha-subunit isoform of the sodium/potassium adenosinetriphosphatase. Biochemistry. 38, 13661–13669 (1999).
    Kinoshita, P. F. et al. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol. 7, 195 (2016).
    Azizan, E. A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 1055–1060 (2013).
    De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196 (2003).
    Heinzen, E. L. et al. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat. Genet. 44, 1030–1034 (2012).
    Demos, M. K. et al. A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J. Rare Dis. 9, 15 (2014).
    de Carvalho Aguiar, P. et al. Mutations in the Na+/K+-ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron. 43, 169–175 (2004).
    Liang, M. et al. Identification of a pool of non-pumping Na/K-ATPase. J. Biol. Chem. 282, 10585–10593 (2007).
    Xie, Z. & Askari, A. Na(+)/K(+)-ATPase as a signal transducer. Eur. J. Biochem. 269, 2434–2439 (2002).
    Parsons, S. J. & Parsons, J. T. Src family kinases, key regulators of signal transduction. Oncogene. 23, 7906–7909 (2004).
    Lopez, J. et al. Src tyrosine kinase inhibits apoptosis through the Erk1/2- dependent degradation of the death accelerator Bik. Cell Death. Differ. 19, 1459–1469 (2012).
    Huveneers, S. & Danen, E. H. Adhesion signaling - crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059–1069 (2009).
    Aperia, A. New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. J. Intern. Med. 261, 44–52 (2007).
    Schoner, W. Ouabain, a new steroid hormone of adrenal gland and hypothalamus. Exp. Clin. Endocrinol. Diabetes. 108, 449–454 (2000).
    Hodes, A., Rosen, H., Deutsch, J., Lifschytz, T., Einat, H. & Lichtstein, D. Endogenous cardiac steroids in animal models of mania. Bipolar Disord. 18, 451–459 (2016).
    Li, J. et al. Ouabain protects against adverse developmental programming of the kidney. Nat. Commun. 1, 42 (2010).
    Burlaka, I. et al. Ouabain Protects against Shiga Toxin-Triggered Apoptosis by Reversing the Imbalance between Bax and Bcl-xL. J. Am. Soc. Nephrol. 24, 1413–1423 (2013).
    Kinoshita, P. F. et al. Signaling function of Na,K-ATPase induced by ouabain against LPS as an inflammation model in hippocampus. J. Neuroinflammation. 11, 218 (2014).
    McGrail, K. M., Phillips, J. M. & Sweadner, K. J. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J Neurosci. 11, 381–91 (1991).
    Ndubaku, U. & de Bellard, M. E. Glial cells: old cells with new twists. Acta Histochem. 110, 182–195 (2008).
    Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).
    Gourine, A. V. et al. Astrocytes control breathing through pH-dependent release of ATP. Science. 329, 571–575 (2010).
    Snaidero, N. & Simons, M. Myelination at a glance. J. Cell Sci. 127, 2999–3004 (2014).
    Xue, Z. et al. Increased Na, K-ATPase alpha2 isoform gene expression by ammonia in astrocytes and in brain in vivo. Neurochem. Int. 57, 395–403 (2010).
    Hertz, L., Gerkau, N. J., Xu, J., Durry, S., Song, D., Rose, C. R. & Peng, L. Roles of astrocytic Na(+), K(+)-ATPase and glycogenolysis for K(+) homeostasis in mammalian brain. J. Neurosci. Res. 93, 1019–1030 (2015).
    Chatton, J. Y., Magistretti, P. J. & Barros, L. F. Sodium signaling and astrocyte energy metabolism. Glia. 64, 1667–1676 (2016).
    Magistretti, P. J. & Chatton, J. Y. Relationship between L-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes. J. Neural. Transm. (Vienna). 112, 77–85 (2005).
    Cherniavsky, L. M., Karlish, S. J. & Garty, H. Cardiac glycosides induced toxicity in human cells expressing α1-, α2-, or α3-isoforms of Na-K-ATPase. Am. J. Physiol. Cell Physiol. 309, 126–135 (2015).
    Glezer, I. et al. MK-801 and 7-Ni attenuate the activation of brain NF-kappa B induced by LPS. Neuropharmacology. 45, 1120–1129 (2003).
    Pereira, S. G. & Oakley, F. Nuclear factor-kappaB1: regulation and function. Int. J. Biochem. Cell Biol. 40, 1425–1430 (2008).
    Thomas, W. E. Brain macrophages: evaluation of microglia and their functions. Brain Res. Brain Res. Rev. 17, 61–74 (1992).
    Phillips, E. C. et al. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem. Soc. Trans. 42, 1321–1325 (2014).
    Maragakis, N. J. & Rothstein, J. D. Mechanisms of Disease: astrocytes in neurodegenerative disease. Nat. Clin. Pract. Neurol. 2, 679–689 (2006).
    Gorina, R., Font-Nieves, M., Márquez-Kisinousky, L., Santalucia, T. & Planas, A. M. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59, 242–255 (2011).
    Lehnardt, S. et al. The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci. 22, 2478–2486 (2002).
    Jack, C. S. et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol. 175, 4320–4330 (2005).
    Vaure, C. & Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 5, 316 (2014).
    Yuan, T. M., Sun, Y., Zhan, C. Y. & Yu, H. M. Intrauterine infection/inflammation and perinatal brain damage: role of glial cells and Toll-like receptor signaling. J. Neuroimmunol. 229, 16–25 (2010).
    Takeshita, Y. & Ransohoff, R. M. Inflammatory cell trafficking across the blood-brain barrier (BBB): Chemokine regulation and in vitro models. Immunol. Rev. 248, 228–239 (2012).
    Alvarez, J. I., Katayama, T. & Prat, A. Glial influence on the blood brain barrier. Glia. 61, 1939–1958 (2013).
    Kaltschmidt, B. & Kaltschmidt, C. NF-kappaB in the nervous system. Cold Spring Harb. Perspect. Biol. 2, a001271 (2009).
    de Sá Lima, L. et al. Ouabain activates NFkappaB through an NMDA signaling pathway in cultured cerebellar cells. Neuropharmacology. 73, 327–336 (2013).
    Ting, A. Y. & Endy, D. Signal transduction. Decoding NF-kappaB signaling. Science. 298, 1189–90 (2002).
    Liu, X. L., Miyakawa, A., Aperia, A. & Krieger, P. Na,K-ATPase generates calcium oscillations in hippocampal astrocytes. Neuroreport. 18, 597–600 (2007).
    O’Brien, W. J., Lingrel, J. B. & Wallick, E. T. Ouabain binding kinetics of the rat alpha two and alpha three isoforms of the sodium-potassium adenosine triphosphate. Arch. Biochem. Biophys. 310, 32–39 (1994).
    Hartford, A. K., Messer, M. L., Moseley, A. E., Lingrel, J. B. & Delamere, N. A. Na,K-ATPase alpha 2 inhibition alters calcium responses in optic nerve astrocytes. Glia. 45, 229–237 (2004).
    Petrushanko, I. et al. Oxygen-induced Regulation of Na/K ATPase in cerebellar granule cells. J. Gen. Physiol. 130, 389–398 (2007).
    Dvela, M., Rosen, H., Ben-Ami, H. C. & Lichtstein, D. Endogenous ouabain regulates cell viability. Am. J. Physiol. Cell Physiol. 302, 442–452 (2012).
    Forshammar, J., Block, L., Lundborg, C., Biber, B. & Hansson, E. Naloxone and ouabain in ultralow concentrations restore Na+/K+-ATPase and cytoskeleton in lipopolysaccharide-treated astrocytes. J. Biol. Chem. 286, 31586–31597 (2011).
    de Vasconcelos, D. I. et al. Anti-inflammatory and antinociceptive activity of ouabain in mice. Mediators Inflamm. 2011, 912–925 (2011).
    Matsumori, A. et al. Modulation of cytokine production and protection against lethal endotoxemia by the cardiac glycoside ouabain. Circulation. 96, 1501–1506 (1997).
    Yang, Q. et al. Cardiac glycosides inhibit TNF-alpha/NF-kappaB signaling by blocking recruitment of TNF receptor-associated death domain to the TNF receptor. Proc. Natl. Acad. Sci. USA 102, 9631–9636 (2005).
    Golden, W. C. & Martin, L. J. Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo. Neuroscience. 137, 133–144 (2006).
    Pierre, S. V. et al. Isoform specificity of Na-K-ATPase-mediated ouabain signaling. Am. J. Physiol. Renal Physiol. 294, 859–866 (2008).
    Hou, X. et al. Enhanced pressor response to increased CSF sodium concentration and to central ANG I in heterozygous alpha2 Na+-K+-ATPase knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, 1427–1438 (2009).
    Moseley, A. E. et al. Deficiency in Na,K-ATPase alpha isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci. 27, 616–626 (2007).
    Illarionava, N. B., Brismar, H., Aperia, A. & Gunnarson, E. Role of Na, K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake. PLoS One 9(6), e98469 (2014).
    Anderson, W. R. & Stahl, W. L. Alpha 2 mRNA of Na+K+ ATPase is increased in astrocytes of rat hippocampus after treatment with kainic acid. Neurochem. Int. 31, 549–556 (1997).
    Liao, C. K., Wang, S. M., Chen, Y. L., Wang, H. S. & Wu, J. C. Lipopolysaccharide-induced inhibition of connexin43 gap junction communication in astrocytes is mediated by downregulation of caveolin-3. Int. J. Biochem. Cell Biol. 42, 762–770 (2010).
    Jiang, B. et al. Temporal control of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. J. Biol. Chem. 279, 1323–1329 (2004).
    Andreakos, E. et al. Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. Blood. 103, 2229–2237 (2004).
    Lacroix-Lamandé, S. et al. Downregulation of the Na/K-ATPase pump by leptospiral glycolipoprotein activates the NLRP3 inflammasome. J Immunol. 188, 2805–2814 (2012).
    Anderson, G. & Ojala, J. Alzheimer’s and seizures: interleukin-18, indoleamine 2,3-dioxygenase and quinolinic acid. Int. J. Tryptophan. Res. 3, 169–173 (2010).
    Gallardo, G. et al. An α2-Na/K ATPase/α-adducin complex in astrocytes triggers non-cell autonomous neurodegeneration. Nat. Neurosci. 17, 1710–1719 (2014).
    Yshii, L. M., Denadai-Souza, A., Vasconcelos, A. R., Avellar, M. C. W. & Scavone, C. Suppression of MAPK attenuates neuronal cell death induced by activated glia-conditioned medium in alpha-synuclein overexpressing SH-SY5Y cells. J. Neuroinflammation 12, 193 (2015).
    Russo, L. C., Castro, L. M., Gozzo, F. C. & Ferro, E. S. Inhibition of thimet oligopeptidase by siRNA alters specific intracellular peptides and potentiates isoproterenol signal transduction. FEBS letters 586, 3287–3292 (2012).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020