Exportar registro bibliográfico


Metrics:

Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress (2018)

  • Authors:
  • USP affiliated authors: PRADO, FERNANDA MANSO - IQ ; MASCIO, PAOLO DI - IQ
  • Unidade: IQ
  • DOI: 10.1007/s10725-018-0385-5
  • Subjects: CAFÉ; ESTRESSE OXIDATIVO; FOTOSSÍNTESE; ESPECTROMETRIA DE MASSAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10725-018-0385-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Vânia Aparecida da; PRADO, Fernanda Manso; ANTUNES, Werner Camargos; et al. Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress. Plant Growth Regulation, Dordrecht, v. 85, n. 2, p. 221–22, 2018. Disponível em: < http://dx.doi.org/10.1007/s10725-018-0385-5 > DOI: 10.1007/s10725-018-0385-5.
    • APA

      Silva, V. A. da, Prado, F. M., Antunes, W. C., Paiva, R. M. C., Ferrão, M. A. G., Andrade, A. C., et al. (2018). Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress. Plant Growth Regulation, 85( 2), 221–22. doi:10.1007/s10725-018-0385-5
    • NLM

      Silva VA da, Prado FM, Antunes WC, Paiva RMC, Ferrão MAG, Andrade AC, Di Mascio P, Loureiro ME, DaMatta FM, Almeida AM. Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress [Internet]. Plant Growth Regulation. 2018 ; 85( 2): 221–22.Available from: http://dx.doi.org/10.1007/s10725-018-0385-5
    • Vancouver

      Silva VA da, Prado FM, Antunes WC, Paiva RMC, Ferrão MAG, Andrade AC, Di Mascio P, Loureiro ME, DaMatta FM, Almeida AM. Reciprocal grafting between clones with contrasting drought tolerance suggests a key role of abscisic acid in coffee acclimation to drought stress [Internet]. Plant Growth Regulation. 2018 ; 85( 2): 221–22.Available from: http://dx.doi.org/10.1007/s10725-018-0385-5

    Referências citadas na obra
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
    DaMatta FM, Loos RA, Silva EA, Loureiro ME (2002) Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. J Plant Physiol 159:975–998. https://doi.org/10.1078/0176-1617-00807
    DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164:111–117. https://doi.org/10.1016/S0168-9452(02)00342-4
    de Sa M, Ferreira JP, Queiroz VT, Vilas-Boas L, Silva MC, Almeida MH, Guerra-Guimaraes L, Bronze MR (2014) A liquid chromatography/electrospray ionisation tandem mass spectrometry method for the simultaneous quantification of salicylic, jasmonic and abscisic acids in Coffea arabica leaves. J Sci Food Agric 94:529–536. https://doi.org/10.1002/jsfa.6288
    Escandón M, Cañal MJ, Pascual J, Pinto G, Correia B, Amaral J, Meijón M (2016) Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol 36:63–77. https://doi.org/10.1093/treephys/tpv127
    Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol 40:503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443
    Floková K, Tarkowska D, Miersch O, Strnad M, Wasternack C, Novak O (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105:147–157. https://doi.org/10.1016/j.phytochem.2014.05.015
    Giannopolitis CN, Ries SK (1977) Superoxide dismutases occurrence in higher plants. Plant Physiol 59:309–314. https://doi.org/10.1104/pp.59.2.309
    Havir EA, McHale NA (1989) Regulation of catalase activity in leaves of Nicotiona sysvestris by high CO2. Plant Physiol 89:952–957. https://doi.org/10.1104/pp.89.3.952
    Korovetska H, Novák O, Turečková V, Hajičková M, Gloser V (2016) Signalling mechanisms involved in the response of two varieties of Humulus lupulus L. to soil drying: II. Changes in the concentration of abscisic acid catabolites and stress-induced phytohormones. Plant Growth Regul 78:13–20. https://doi.org/10.1007/s10725-015-0058-6
    Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247. https://doi.org/10.1016/S0098-8472(01)
    Liu B, Li M, Cheng L, Liang D, Zou Y, Ma F (2012) Influence of rootstock on antioxidant system in leaves and roots of young apple trees in response to drought stress. Plant Growth Regul 67:247–256. https://doi.org/10.1007/s10725-012-9683
    Marraccini P, Vineck F, Alves GSC, Ramos HJO, Elbelt S, Vieira NG, Carneiro FA, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot 63:4191–4221. https://doi.org/10.1093/jxb/ers103
    Martinez CA, Loureiro ME, Oliva MA, Maestri M (2001). Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Sci. 160:505–515. https://doi.org/10.1016/S0168-9452(00)00418-0
    McAdam SAM, Brodribb TJ, Ross JJ (2016) Shoot-derived abscisic acid promotes root growth. Plant Cell Environ 39:652–659. https://doi.org/10.1111/pce.12669
    Menezes-Silva PE, Cavatte PC, Morais LE, Medina EF, DaMatta FM (2013) The functional divergence of biomass partitioning, carbon gain and water use in Coffea canephora in response to the water supply: implications for breeding aimed at improving drought tolerance. Environ Exp Bot 87:49–57. https://doi.org/10.1016/j.envexpbot.2012.09.005
    Merilo E, Jalakas P, Kollist H, Brosche M (2015) The role of ABA recycling and transporter proteins in rapid stomatal responses to reduced air humidity elevated CO2, and exogenous. ABA Mol Plant 8:657–659. https://doi.org/10.1016/j.molp.2015.01.014
    Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
    Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2014) ABA control of plant macroelement membrane transport systems in response to water deficit and high salinity. New Phytol 202:35–49. https://doi.org/10.1111/nph.12613
    Pinheiro HA, DaMatta FM, Chaves ARM, Fontes EPB, Loureiro ME (2004) Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drough. Plant Sci 167:1307–1314. https://doi.org/10.1016/j.plantsci.2004.06.027
    Pinheiro HA, DaMatta FM, Chaves ARM, Loureiro ME, Ducatti C (2005) Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96:101–108. https://doi.org/10.1093/aob/mci154
    Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273. https://doi.org/10.1016/j.envexpbot.2005.02.008
    Ross ARS, Ambrose SJ, Cutler AJ, Feurtado JA, Kermode AR, Nelson K, Zhou R, Abrams SR (2004) Determination of endogenous and supplied deuterated abscisic acid in plant tissues by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry with multiple reaction monitoring. Anal Biochem 329:324–333. https://doi.org/10.1016/j.ab.2004.02.026
    Santana-Vieira DDS, Freschi L, Almeida LAH, Moraes DHS, Neves DM, Santos LM, Bertolde FZ, Soares Filho WS, Coelho Filho MA, Gesteira AS (2016) Survival strategies of citrus rootstocks subjected to drought. Sci Rep 6:1–12. https://doi.org/10.1038/srep38775
    Silva VA, Antunes WC, Guimarães BLS, Paiva RMC, Silva VF, Ferrão MAG, DaMatta FM, Loureiro ME (2010) Physiological response of Conilon coffee clone sensitive to drought grafted onto tolerant rootstock. Pesq Agropec Bras 45:457–464. https://doi.org/10.1590/S0100-204X2010000500004
    Taylor AJ, Fernandez RT, Nzokou P, Cregg B (2013) Carbon isotope discrimination, gas exchange, and growth of container-grown conifers under cyclic irrigation. HortScience 48:848–854. http://hortsci.ashspublications.org/content/48/7/848.full
    Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449. https://doi.org/10.1038/srep12449
    Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Freire LP, Vinecky F, Elbelt S, Silva VA, DaMatta FM, Ferrão MAG, Marraccini P, Andrade AC (2013) Different molecular mechanisms account for drought tolerance in Coffea canephora var. Conilon. Trop Plant Biol 6:181–190. https://doi.org/10.1007/s12042-013-9126-0
    Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:1611–1612. https://doi.org/10.3389/fpls.2017.00161
    Weng JK, Ye M, Li B, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893. https://doi.org/10.1016/j.cell.2016.06.027
    Zhao FY, Cai FX, Gao HJ, Zhang SY, Wang K, Liu T, Wang X (2015) ABA plays essential roles in regulating root growth by interacting with auxin and MAPK signaling pathways and cell-cycle machinery in rice seedlings. Plant Growth Regul 75:535–547. https://doi.org/10.1007/s10725-014-0017-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020