Exportar registro bibliográfico


In situ effect of enamel salivary exposure time and type of intraoral appliance before an erosive challenge (2017)

  • Authors:
  • Unidade: FOB
  • DOI: 10.1007/s00784-016-2043-5
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00784-016-2043-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MENDONÇA, Fernanda Lyrio; JORDÃO, Maisa Camillo; IONTA, Franciny Querobim; et al. In situ effect of enamel salivary exposure time and type of intraoral appliance before an erosive challenge. Clinical Oral Investigations, Berlin, v. No 2017, n. 8, p. 2465-2471, 2017. Disponível em: < http://dx.doi.org/10.1007/s00784-016-2043-5 > DOI: 10.1007/s00784-016-2043-5.
    • APA

      Mendonça, F. L., Jordão, M. C., Ionta, F. Q., Buzalaf, M. A. R., Honório, H. M., Wang, L., & Rios, D. (2017). In situ effect of enamel salivary exposure time and type of intraoral appliance before an erosive challenge. Clinical Oral Investigations, No 2017( 8), 2465-2471. doi:10.1007/s00784-016-2043-5
    • NLM

      Mendonça FL, Jordão MC, Ionta FQ, Buzalaf MAR, Honório HM, Wang L, Rios D. In situ effect of enamel salivary exposure time and type of intraoral appliance before an erosive challenge [Internet]. Clinical Oral Investigations. 2017 ; No 2017( 8): 2465-2471.Available from: http://dx.doi.org/10.1007/s00784-016-2043-5
    • Vancouver

      Mendonça FL, Jordão MC, Ionta FQ, Buzalaf MAR, Honório HM, Wang L, Rios D. In situ effect of enamel salivary exposure time and type of intraoral appliance before an erosive challenge [Internet]. Clinical Oral Investigations. 2017 ; No 2017( 8): 2465-2471.Available from: http://dx.doi.org/10.1007/s00784-016-2043-5

    Referências citadas na obra
    Huysmans MC, Chew HP, Ellwood RP (2011) Clinical studies of dental erosion and erosive wear. Caries Res 45(Suppl 1):60–68. doi: 10.1159/000325947
    Alencar CR, Magalhães AC, Machado MAAM, Oliveira TM, Honório HM, Rios D (2014) In situ effect of a commercial CPP-ACP chewing gum on the human enamel initial erosion. J Dent 42:1502–1507. doi: 10.1016/j.jdent.2014.08.008
    Buzalaf MA, Magalhães AC, Wiegand A (2014) Alternatives to fluoride in the prevention and treatment of dental erosion. Monogr Oral Sci 25:244–252. doi: 10.1159/000360557
    Hove LH, Stenhagen KR, Holme B, Tveit AB (2014) The protective effect of SnF2 containing toothpastes and solution on enamel surfaces subjected to erosion and abrasion in situ. Eur Arch of Paediatr Dent 15:237–243. doi: 10.1007/s40368-013-0107-7
    Huysmans MC, Young A, Ganss C (2014) The role of fluoride in erosion therapy. Monogr Oral Sci 25:230–243. doi: 10.1159/000360555
    Oliveira GC, Boteon AP, Ionta FQ, Moretto MJ, Honório HM, Wang L, Rios D (2015) In vitro effects of resin infiltration on enamel erosion inhibition. Oper Dent 40:492–502. doi: 10.2341/14-162-L
    Scatolin RS, Alonso-Filho FL, Galo R, Rios D, Borsatto MC, Corona SA (2015) CO2 laser emission modes to control enamel erosion. Microsc Res Tech 78:654–659. doi: 10.1002/jemt.22518
    West NX, Davies M, Amaechi BT (2011) In vitro and in situ erosion models for evaluating tooth substance loss. Caries Res 45:43–52. doi: 10.1159/000325945
    Buzalaf MA, Hannas AR, Kato MT (2012) Saliva and dental erosion. J Appl Oral Sci 20:493–502
    Hara AT, Zero DT (2014) The potential of saliva in protecting against dental erosion. Monogr in Oral Sci 25:197–205. doi: 10.1159/000360372
    Hannig M, Hannig C (2014) The pellicle and erosion. Monogr Oral Sci 25:206–214. doi: 10.1159/000360376
    Lussi A, Carvalho TS (2014) Erosive tooth wear: a multifactorial condition of growing concern and increasing knowledge. Monogr Oral Sci 25:1–15. doi: 10.1159/000360380
    Vukosavljevic D, Custodio W, Buzalaf MA, Hara AT, Siqueira WL (2014) Acquired pellicle as a modulator for dental erosion. Arch Oral Biol 59:631–638. doi: 10.1016/j.archoralbio.2014.02.002
    Young A, Tenuta LM (2011) Initial erosion models. Caries Res 45:33–42. doi: 10.1159/000325943
    Carvalho TS, Colon P, Ganss C, Huysmans MC, Lussi A, Schlueter N, Schmalz G, Shellis RP, Tveit AB, Wiegand A (2015) Consensus report of the European Federation of Conservative Dentistry: erosive tooth wear-diagnosis and management. Clin Oral Investig 19:1557–1561. doi: 10.1007/s00784-015-1511-7
    Hannig M, Balz M (1999) Influence on vivo formed salivary pellicle on enamel erosion. Caries Res 33:372–379
    Hannig M, Balz M (2001) Protective effect of salivary pellicles from two different intraoral sites on enamel erosion. Caries Res 35:142–148
    Hannig M, Hess NJ, Hoth-Hannig W, de Vrese M (2003) Influence of salivary pellicle formation time on enamel demineralization—an in situ pilot study. Clin Oral Investig 7:158–161
    Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrashevych Y (2004) Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol 49:903–910
    Buzalaf MA, Moraes CM, Olympio KP, Pessan JP, Grizzo LT, Silva TL, Magalhães AC, Oliveira RC, Groisman S, Ramires I (2013) Seven years of external control of fluoride levels in the public water supply in Bauru, São Paulo, Brazil. J Appl Oral Sci 21:92–98
    Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64
    Lendenmann U, Grogan J, Oppenheim FG (2000) Saliva and dental pellicle—a review. Adv Dent Res 14:22–28
    Siqueira WL, Custodio W, McDonald EE (2012) New insights into the composition and functions of the acquired enamel pellicle. J Dent Res 91:1110–1118. doi: 10.1177/0022034512462578
    Zimmerman JN, Custodio W, Hatibovic-Kofman S, Lee YH, Xiao Y, Siqueira WL (2013) Proteome and peptidome of human acquired enamel pellicle on deciduous teeth. Int J Mol Scis 14:920–934. doi: 10.3390/ijms14010920
    Carvalho TS, Baumann T, Lussi A (2016) In vitro salivary pellicles from adults and children have different protective effects against erosion. Clin Oral Investig 20:1973–1979
    Amaechi BT, Higham SM, Edgar WM, Milosevic A (1999) Thickness of acquired salivary pellicles as a determinant of the sites of dental erosion. J Dent Res 78:1821–1828
    Hara AT, Lussi A, Zero DT (2006) Biological factors. Monogr Oral Sci 20:88–99
    Jager DH, Vieira AM, Ligtenberg AJ, Bronkhorst E, Huysmans MC, Vissink A (2011) Effect of salivary factors on the susceptibility of hydroxyapatite to early erosion. Caries Res 45:532–537. doi: 10.1159/000331938
    Moazzez R, Bartlett D (2014) Intrinsic causes of erosion. Monogr Oral Sci 25:180–196. doi: 10.1159/000360369
    Gregg T, Mace S, West NX, Add M (2014) A study in vitro of the abrasive effect of the tongue on enamel and dentine softened by acid erosion. Caries Res 38:557–560
    Amaechi BT, Hightman SM, Edgar WM (2003) Influence of abrasion in clinical manifestation of human dental erosion. J Oral Rehabil 30:407–413
    Hannig C, Berndt D, Hoth-Hannig W, Hannig M (2009) The effect of acid beverages on the ultrastructureof the acquired pellicle—an in situ study. Arch Oral Biol 54:518–526. doi: 10.1016/j.archoralbio.2009.02.009
    Delecrode TR, Siqueira WL, Zaidan FC, Bellini MR, Moffa EB, Mussi MC, Xiao Y, Buzalaf MA (2015) Identification of acid-resistant proteins in acquired enamel pellicle. J Dent 43:1470–1475. doi: 10.1016/j.jdent.2015.10.009
    Rios D, Honório HM, Magalhães AC, Delbem AC, Machado MA, Silva SM, Buzalaf MA (2006) Effect of salivary stimulation on erosion of human and bovine enamel subjected or not to subsequent abrasion: an in situ/ex vivo study. Caries Res 40:218–223
    Rios D, Honório HM, Magalhães AC, Silva SM, Delbem AC, Machado MA, Buzalaf MA (2008) Scanning electron microscopic study of the in situ effect of salivary stimulation on erosion and abrasion in human and bovine enamel. Braz Oral Res 22:132–138
    Turssi CP, Messias DF, Corona SM, Serra MC (2010) Viability of using enamel and dentin from bovine origin as a substitute for human counterparts in an intraoral erosion model. Braz Dent J 21:332–336
    Meurman JH, Frank RM (1991) Progression and surface ultrastructure of in vitro caused erosive lesions in human and bovine enamel. Caries Res 25:81–87
    Attin T, Wegehaupt F, Gries D, Wiegand A (2007) The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: erosion-abrasion experiments. J Dent 35:773–777
    Amaechi BT, Higham SM, Edgar WM (1999) Factors influencing the development of dental erosion in vitro: enamel type, temperature and exposure time. J Oral Rehabil 26:624–630
    White AJ, Yorath C, ten Hengel V, Leary SD, Huysmans MC, Barbour ME (2010) Human and bovine enamel erosion under ‘single-drink’ conditions. Eur J Oral Sci 118:604–609
    Yassen GH, Platt JA, Hara AT (2011) Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci 53:273–282
    Arends J, Christoffersen J, Ruben J, Jongebloed WL (1989) Remineralization of bovine dentine in vitro. The influence of the F content in solution on mineral distribution. Caries Res 23:309–314
    Attin T, Wegehaupt FJ (2014) Methods for assessment of dental erosion. Monogr Oral Sci 25:123–142. doi: 10.1159/000360355
    Wallwork ML, Kirkham J, Zhang J, Smith DA, Brookes SJ, Shore RC et al (2001) Binding of matrix proteins to developing enamel crystals: an atomic force microscopy study. Langmuir 17:2508–2513
    West NX, Hughes J, Addy M, Parker D, Darby-Dowman A (2003) Development of low erosive carbonated fruit drinks. 2. Evaluation of an experimental carbonated blackcurrant drink compared to a conventional carbonated drink. J Dent 31:361–365
    West NX, Hughes JA, Parker D, Weaver LJ, Moohan M, De’Ath J, Addy M (2004) Modification of soft drinks with xanthan gum to minimise erosion. Br Dent J 196:478–481
    Tenovuo J (1997) Salivary parameters of relevance for assessing caries activity in individuals and populations. Community Dent Oral Epidemiol 25:82–86
    Algarni AA, Mussi MC, Moffa EB, Lippert F, Zero DT, Siqueira WL, Hara AT (2015) The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention. PLoS One 10:e0128196. doi: 10.1371/journal.pone.0128196
    Cardenas M, Elofsson U, Lindh L (2007) Salivary mucin MUC5B could be an important component of in vitro pellicles of human saliva: an in situ ellipsometry and atomic force microscopy study. Biomacromolecules 8:1149–1156
    Nieuw Amerongen AV, Oderkerk CH, Driessen AA (1987) Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res 21:297–309
    Carlen A, Borjesson AC, Nikdel K, Olsson J (1998) Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res 32:447–455
    Lussi A, Von Salis-Marincek M, Ganss C, Hellwing E, Cheaib Z, Jaeggi T (2011) Clinical study monitoring the pH on tooth surface in patients with or without erosion. Caries Res 46:507–512

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020