Exportar registro bibliográfico


Metrics:

Cellulose fiber size defines efficiency of enzymatic hydrolysis and impacts degree of synergy between endoand exoglucanases (2018)

  • Authors:
  • USP affiliated author: POLIKARPOV, IGOR - IFSC
  • School: IFSC
  • DOI: 10.1007/s10570-018-1700-z
  • Subjects: TRICHODERMA; MICROSCOPIA ELETRÔNICA DE VARREDURA; CELULOSE
  • Keywords: Trichoderma harzianum; Cel7A; Cel7B; Synergism; Scanning electron microscopy
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Cellulose
    • ISSN: 0969-0239
    • Volume/Número/Paginação/Ano: v. 25, n. 3, p. 1865-1881, Mar. 2018
  • Online source accessDOI
    Informações sobre o DOI: 10.1007/s10570-018-1700-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PELLEGRINI, V. O. A.; BERNARDES, Amanda; REZENDA, Camila A.; POLIKARPOV, Igor. Cellulose fiber size defines efficiency of enzymatic hydrolysis and impacts degree of synergy between endoand exoglucanases. Cellulose, Dordrecht, Springer, v. 25, n. 3, p. 1865-1881, 2018. Disponível em: < http://dx.doi.org/10.1007/s10570-018-1700-z > DOI: 10.1007/s10570-018-1700-z.
    • APA

      Pellegrini, V. O. A., Bernardes, A., Rezenda, C. A., & Polikarpov, I. (2018). Cellulose fiber size defines efficiency of enzymatic hydrolysis and impacts degree of synergy between endoand exoglucanases. Cellulose, 25( 3), 1865-1881. doi:10.1007/s10570-018-1700-z
    • NLM

      Pellegrini VOA, Bernardes A, Rezenda CA, Polikarpov I. Cellulose fiber size defines efficiency of enzymatic hydrolysis and impacts degree of synergy between endoand exoglucanases [Internet]. Cellulose. 2018 ; 25( 3): 1865-1881.Available from: http://dx.doi.org/10.1007/s10570-018-1700-z
    • Vancouver

      Pellegrini VOA, Bernardes A, Rezenda CA, Polikarpov I. Cellulose fiber size defines efficiency of enzymatic hydrolysis and impacts degree of synergy between endoand exoglucanases [Internet]. Cellulose. 2018 ; 25( 3): 1865-1881.Available from: http://dx.doi.org/10.1007/s10570-018-1700-z

    Referências citadas na obra
    Arantes V, Saddler J (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4. https://doi.org/10.1186/1754-6834-3-4
    Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, Westh P (2017) Exo–exo synergy between Cel6A and Cel7A from Hypocrea jecorina: role of carbohydrate binding module and the endo-lytic character of the enzymes. Biotechnol Bioeng 114:1639–1647. https://doi.org/10.1002/bit.26276
    Bernardinelli OD, Lima MA, Rezende CA, Polikarpov I, deAzevedo ER (2015) Quantitative 13C MultiCP solid-state NMR as a tool for evaluation of cellulose crystallinity index measured directly inside sugarcane biomass. Biotechnol Biofuels 8:110. https://doi.org/10.1186/s13068-015-0292-1
    Boisset C, Fraschini C, Schülein M, Henrissat B, Chanzy H (2000) Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase Cel7A. Appl Environ Microbiol 66:1444–1452. https://doi.org/10.1128/aem.66.4.1444-1452.2000
    Boisset C, Pétrequin C, Chanzy H, Henrissat B, Schülein M (2001) Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose. Biotechnol Bioeng 72:339–345. https://doi.org/10.1002/1097-0290(20010205)72:3<339::AID-BIT11>3.0.CO;2-%23
    Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124
    Colussi F, Serpa V, Delabona PS, Manzine LR, Voltatodio ML, Alves R, Mello BL, Pereira N Jr, Farinas CS, Golubev AM, Santos MA, Polikarpov I (2011) Purification, and biochemical and biophysical characterization of cellobiohydrolase I from Trichoderma harzianum IOC 3844. J Microbiol Biotechnol 21:808–817. https://doi.org/10.4014/jmb.1010.10037
    Cruys-Bagger N, Tatsumi H, Ren GR, Borch K, Westh P (2013) Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain. Biochemistry 52:8938–8948. https://doi.org/10.1021/bi401210n
    Ganner T, Bubner P, Eibinger M, Mayrhofer C, Plank H, Nidetzky B (2012) Dissecting and reconstructing synergism: in situ visualization of cooperativity among cellulases. J Biol Chem 287:43215–43222. https://doi.org/10.1074/jbc.M112.419952
    Goodwin JW (2004) Colloids and Interfaces with surfactants and polymers—an introduction. Wiley, London. https://doi.org/10.1002/0470093919
    Harris P, Welner D, McFarland K, Re E, Navarro Poulsen J, Brown K, Salbo R, Ding H, Vlasenko E, Merino S (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316. https://doi.org/10.1021/bi100009p
    Hemsworth GR, Johnston EM, Davies GJ, Walton PH (2015) Lytic polysaccharide monooxygenases in biomass conversion. Trends Biotechnol 33:747–761. https://doi.org/10.1016/j.tibtech.2015.09.006
    Henrissat B, Driguez H, Viet C, Schulein M (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat Biotechnol 3:722–726. https://doi.org/10.1038/nbt0885-722
    Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:1–13. https://doi.org/10.1186/1754-6834-5-45
    Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, Oxford
    Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282. https://doi.org/10.1126/science.l208386
    Jalak J, Kurašin M, Teugjas H, Väljamäe P (2012) Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 287:28802–28815. https://doi.org/10.1074/jbc.M112.381624
    Jeoh T, Wilson DB, Walker LP (2006) Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol Prog 22:270–277. https://doi.org/10.1021/bp050266f
    Kari J, Olsen J, Borch K, Cruys-Bagger N, Jensen K, Westh P (2014) Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity. J Biol Chem 47:32459–32468. https://doi.org/10.1074/jbc.M114.604264
    Katzen F (2007) Gateway® recombinational cloning: a biological operating system. Exp Opin Drug Discov 2:571–589. https://doi.org/10.1517/17460441.2.4.571
    Kostylev M, Wilson DB (2012) Synergistic interactions in cellulose hydrolysis. Biofuels 3:61–70. https://doi.org/10.4155/bfs.11.150
    Kostylev M, Wilson D (2014) A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca. Appl Environ Microbiol 80:339–344. https://doi.org/10.1128/AEM.02706-13
    Kurasin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177. https://doi.org/10.1074/jbc.M110.161059
    Kuusk S, Sørlie M, Väljamäe P (2015) The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes. J Biol Chem 290:11678–11691. https://doi.org/10.1074/jbc.M114.635631
    Li Y, Irwin DC, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73:3165–3172. https://doi.org/10.1128/AEM.02960-06
    Luterbacher JS, Moran-Mirabal JM, Burkholder EW, Walker LP (2015) Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose. Biotechnol Bioeng 112:21–31. https://doi.org/10.1002/bit.25329
    Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030
    Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710. https://doi.org/10.1042/bj29880705
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10
    Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. ‎Chem Rev 115:1308–1448. https://doi.org/10.1021/cr500351c
    Pellegrini VO, Serpa VI, Godoy AS, Camilo CM, Bernardes A, Rezende CA, Junior NP, Franco Cairo JP, Squina FM, Polikarpov I (2015) Recombinant Trichoderma harzianum endoglucanase I (Cel7B) is a highly acidic and promiscuous carbohydrate-active enzyme. Appl Microbiol Biotechnol 99:9591–9604. https://doi.org/10.1007/s00253-015-6772-1
    Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497
    Rezende CA, Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54. https://doi.org/10.1186/1754-6834-4-54
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089
    Schramm M, Hestrin S (1954) Synthesis of cellulose by Acetobacter xylinum. 1. Micromethod for the determination of celluloses. Biochem J 56:163–166. https://doi.org/10.1042/bj0560163
    Serpa VI, Polikarpov I (2011) Enzymes in bioenergy. In: Goldman MSBH (ed) Routes to cellulosic ethanol, 1st edn. Springer, New York, pp 97–113. https://doi.org/10.1007/978-0-387-92740-4_7
    Silveira MH, Aguiar RS, Siika-aho M, Ramos LP (2014) Assessment of the enzymatic hydrolysis profile of cellulosic substrates based on reducing sugar release. Bioresour Technol 151:392–396. https://doi.org/10.1016/j.biortech.2013.09.135
    Ståhlberg J, Johansson G, Pettersson G (1993) Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose. Biochim Biophys Acta 1157:107–113. https://doi.org/10.1016/0304-4165(93)90085-M
    Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204. https://doi.org/10.1016/j.plasmid.2004.10.001
    Textor LC, Colussi F, Silveira RL, Serpa V, de Mello BL, Muniz JRC, Squina FM, Pereira N, Skaf MS, Polikarpov I (2013) Joint X-ray crystallographic and molecular dynamics study of cellobiohydrolase I from Trichoderma harzianum: deciphering the structural features of cellobiohydrolase catalytic activity. FEBS J 280:56–69. https://doi.org/10.1111/febs.12049
    Tomazini A, Dolce LG, de Oliveira Neto M, Polikarpov I (2015) Xanthomonas campestris expansin-like X domain is a structurally disordered beta-sheet macromolecule capable of synergistically enhancing enzymatic efficiency of cellulose hydrolysis. Biotechnol Lett 37:2419–2426. https://doi.org/10.1007/s10529-015-1927-9
    Vaaje-Kolstad G, Westereng B, Horn SJ, Liu ZL, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222. https://doi.org/10.1126/science.1192231
    Väljamäe P, Sild V, Nutt A, Pettersson G, Johansson G (1999) Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur J Biochem 266:327–334. https://doi.org/10.1046/j.1432-1327.1999.00853.x
    Ververis C, Georghiou K, Christodoulakis N, Santas P, Santas R (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind Crop Prod 19:245–254. https://doi.org/10.1016/j.indcrop.2003.10.006
    Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. PNAS 110:16444–16449. https://doi.org/10.1073/pnas.1316290110
    Watson DL, Wilson DB, Walker LP (2002) Synergism in binary mixtures of Thermobifida fusca cellulases Cel6B, Cel9A, and Cel5A on BMCC and Avicel. Appl Biochem Biotechnol 101:97–111. https://doi.org/10.1385/ABAB:101:2:097
    Wilson DB, Kostylev M (2012) Cellulase processivity. Methods in molecular biology. Methods Mol Biol 908:93–99. https://doi.org/10.1007/978-1-61779-956-3_9
    Woodward J, Hayes MK, Lee NE (1988) Hydrolysis of cellulose by saturating and non-saturating concentrations of cellulase: implications for synergism. Nat Biotechnol 6:301–304. https://doi.org/10.1038/nbt0388-301
    Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824. https://doi.org/10.1002/bit.20282

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020