Exportar registro bibliográfico


Metrics:

Oxidative stress induced by Cu nutritional disorders in Citrus depends on nitrogen and calcium availability (2018)

  • Authors:
  • Autor USP: AZEVEDO, RICARDO ANTUNES DE - ESALQ
  • Unidade: ESALQ
  • DOI: 10.1038/s41598-018-19735-x
  • Subjects: FRUTAS CÍTRICAS; ESTRESSE OXIDATIVO; DISTÚRBIOS NUTRICIONAIS DE PLANTAS; COBRE; NITROGÊNIO; CÁLCIO
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-018-19735-x (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      HIPPLER, Franz Walter Rieger; BOARETTO, Rodrigo Marcelli; DOVIS, Veronica Lorena; et al. Oxidative stress induced by Cu nutritional disorders in Citrus depends on nitrogen and calcium availability. Scientific Reports, London, Macmillan Building, v. 8, p. 1-13, 2018. Disponível em: < https://dx.doi.org/10.1038/s41598-018-19735-x > DOI: 10.1038/s41598-018-19735-x.
    • APA

      Hippler, F. W. R., Boaretto, R. M., Dovis, V. L., Quaggio, J. A., Azevedo, R. A., & Mattos-Júnior, D. (2018). Oxidative stress induced by Cu nutritional disorders in Citrus depends on nitrogen and calcium availability. Scientific Reports, 8, 1-13. doi:10.1038/s41598-018-19735-x
    • NLM

      Hippler FWR, Boaretto RM, Dovis VL, Quaggio JA, Azevedo RA, Mattos-Júnior D. Oxidative stress induced by Cu nutritional disorders in Citrus depends on nitrogen and calcium availability [Internet]. Scientific Reports. 2018 ; 8 1-13.Available from: https://dx.doi.org/10.1038/s41598-018-19735-x
    • Vancouver

      Hippler FWR, Boaretto RM, Dovis VL, Quaggio JA, Azevedo RA, Mattos-Júnior D. Oxidative stress induced by Cu nutritional disorders in Citrus depends on nitrogen and calcium availability [Internet]. Scientific Reports. 2018 ; 8 1-13.Available from: https://dx.doi.org/10.1038/s41598-018-19735-x

    Referências citadas na obra
    Fan, J., He, Z., Ma, L. Q. & Stoffella, P. J. Accumulation and availability of copper in citrus grove soils as affected by fungicide application. J. Soil Sediment. 11, 639–648 (2011).
    Fan, J. et al. Impacts of calcium water treatment residue on the soil-water-plant system in citrus production. Plant Soil 374, 993–1004 (2014).
    Behlau, F., Fonseca, A. E. & Belasque Jr., J. A comprehensive analysis of the Asiatic citrus canker eradication programme in São Paulo state, Brazil, from 1999 to 2009. Plant Pathol. 65(8), 1390–1399 (2016).
    Silva Jr., G. J. et al. Spray volume and fungicide rates for citrus black spot control based on tree canopy volume. Crop Protect. 85, 38–45 (2016).
    Zambrosi, F. C. B., Mesquita, G. L., Tanaka, F. A. O., Quaggio, J. A. & Mattos Jr., D. Phosphorous availability and rootstock affect copper-induced damage to the root ultra-structure of Citrus. Environ. Exp. Bot. 95, 25–33 (2013).
    Sarwar, N. et al. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 90(6), 925–937 (2010).
    Syvertsen, J. P. & Garcia-Sanchez, F. Multiple abiotic stresses occurring with salinity stress in citrus. Environ. Exp. Bot. 103, 128–137 (2014).
    Mattos Jr., D., Graetz, D. A. & Alva, A. K. Biomass distribution and nitrogen-15 partitioning in citrus trees on a sandy entisol. Soil Sci. Soc. Am. J. 67, 555–563 (2003).
    Quaggio, J. A. et al. Nitrogen-fertilizer forms affect the nitrogen-use efficiency in fertigated citrus groves. J. Plant Nutrit. Soil Sci. 177, 404–411 (2014).
    Mattos Jr., D., Ramos, U. M., Quaggio, J. A. & Furlani, P. R. Nitrogênio e cobre na produção de mudas de citros em diferentes porta-enxertos. Bragantia 69, 135–147 (2010).
    Xiong, Z. T., Liu, C. & Geng, B. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicol. Environ. Saf. 64(3), 273–280 (2006).
    Lea, P. J. & Azevedo, R. A. Nitrogen use efficiency. 1. Uptake of nitrogen from the soil. Ann. Appl. Biol. 149, 243–247 (2006).
    Lea, P. J. & Azevedo, R. A. Nitrogen use efficiency. 2. Amino acid metabolism. Ann. Appl. Biol. 151, 269–275 (2007).
    Reis, A. R., Favarin, J. L., Gratão, P. L., Capaldi, F. R. & Azevedo, R. A. Antioxidant metabolism in coffee (Coffea arabica L.) plants in response to nitrogen supply. Theor. Exp. Plant Physiol. 27(3), 203–213 (2015).
    Österås, A. H. & Greger, M. Interactions between calcium and copper or cadmium in Norway spruce. Biol. Plant. 50(4), 6470–652 (2006).
    Salinas, R., Sánches, E., Ruíz, J. M., Lao, M. T. & Romero, L. Phosphorus levels influence plasma membrane H+-ATPase activity and K+, Ca2+, and Mg2+ assimilation in green bean. Commun. Soil Sci. Plant Anal. 44, 456–464 (2013).
    Ambrosini, V. G. et al. Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiol. Biochem. 96, 270–280 (2015).
    Yruela, I. Copper in plants. Braz. J. Plant Physiol. 17, 145–156 (2005).
    Maksymiec, W. & Baszynski, T. Are calcium ions and calcium channels involved in the mechanisms of Cu2+ toxicity in bean plants? The influence of leaf age. Photosynthetica 36, 267–278 (1999).
    Camp, A. F. Symptomatology of dificiencies and toxicities of citrus. Proc. Fla. State Hort. Soc. 51, 140–145 (1938).
    Cambollé, J., García, J. L., Ocete, R., Figueroa, M. E. & Cantos, M. Growth and photosynthetic resposnses to copper in wild grapevine. Chemosphere 93(2), 294–301 (2012).
    Yamori, W., Nagai, T. & Makino, A. The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ. 34, 764–777 (2011).
    Yamori, W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. J. Plant Res. 129, 379–395 (2016).
    Baxter, A., Mittler, R. & Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 65, 1229–1240 (2014).
    Gratão, P. L. et al. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28, 803–816 (2015).
    Pompeu, G. B. et al. Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254, 771–783 (2017).
    Malossiotis, A., Job, D., Ziogas, V. & Tanou, G. Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Front. Plant. Sci. 7, 229, https://doi.org/10.3389/fpls.2016.00229 (2016).
    Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707–1719 (2006).
    Capaldi, F. R., Gratão, P. L., Reis, A. R., Lima, L. W. & Azevedo, R. A. Sulfur metabolism and stress defense responses in plants. Trop. Plant Biol. 8, 60–73 (2015).
    Hippler, F. W. R. et al. Citrus rootstocks regulate the enzymatic and nutritional status and antioxidant system of trees under copper stress. Environ. Exp. Bot. 130, 42–52 (2016).
    Rizzardo, C. et al. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Planta 236, 1701–1712 (2012).
    Janicka-Russak, M., Kabala, K. & Burzynski, M. Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. J. Exp. Bot. 63, 4133–4142 (2012).
    Hochmal, A. K., Schulze, S., Trompelt, K. & Hippler, M. Calcium-dependent regulation of photosynthesis. BBA-Bioenergetics 1847(9), 993–1003 (2015).
    Mittler, R. & Blumwald, E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27, 64–70 (2015).
    Azevedo, R. A., Gratão, P. L., Monteiro, C. C. & Carvalho, R. F. What is new in the research on cadmium-induced stress in plants? Food Energy Secur. 1, 133–140 (2012).
    López-Climent, M. F., Arbona, V., Pérez-Clemente, R. M., Zandalinas, I. & Gómez-Cadenas, A. Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants. Plant Biol. 16, 79–87 (2014).
    Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).
    Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll. Biochim. Biophys. Acta. 990, 87–92 (1989).
    Dovis, V. L. et al. Optimization of the nitrate reductase activity assay for citrus trees. Braz. J. Bot. 37, 383–390 (2014).
    Hippler, F. W. R. et al. Revisiting nutrient management for Citrus production: to what extent does molybdenum affect nitrogen assimilation of trees? Sci. Hort. 225, 462–470 (2017).
    Alexieva, V., Sergiev, I., Mapelli, E. & Karanov, E. The effect of drought and ultraviolet radiation on growth and trees markers in pea and wheat. Plant Cell Environ. 24, 1337–1344 (2001).
    Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principles of protein dye-binding. Anal. Biochem. 72, 248–254 (1976).
    Hippler, F. W. R. et al. Uptake and distribution of soil applied zinc by Citrus Trees - Addressing fertilizer use efficiency with 68Zn labeling. Plos One 10(3), Article ID e0116903, 16 pages, https://doi.org/10.1371/journal.pone.0116903 (2015).
    Azevedo, R. A., Alas, R. M., Smith, R. J. & Lea, P. J. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air ozone fumigation, in leaves and roots of wild-type and catalase-deficient mutant of barley. Physiol. Plant. 104, 280–292 (1998).
    Tewari, R. K., Kumar, P. & Sharma, P. N. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223, 1145–1153 (2006).
    Kraus, T. E., Mckersie, B. D. & Fletcher, R. A. Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J. Plant Physiol. 145, 570–576 (1995).
    Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880 (1981).
    Kar, M. & Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 57, 315–319 (1976).
    Bataglia, O. C., Furlani, A. M. C., Teixeira, J. P. F., Furlani, P. R. & Gallo, J. R. In Método de análise química de plantas, 15–48 (Instituto Agronômico de Campinas, 1983).
    Tedesco, M. J., Volkweiss, S. J. & Bohnen, H. In Análises de solo, plantas e outros minerais, 109–110 pages (Universidade Federal do Rio Grande do Sul, 1995).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020