Exportar registro bibliográfico


Metrics:

In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate (2018)

  • Authors:
  • USP affiliated authors: FERREIRA, MARCELO URBANO - ICB ; SOARES, IRENE DA SILVA - FCF ; BARGIERI, DANIEL YOUSSEF - ICB
  • Unidades: ICB; FCF
  • DOI: 10.1186/s12936-017-2144-x
  • Subjects: ERITRÓCITOS; PARASITOLOGIA; VACINAS; PLASMODIUM FALCIPARUM; MALÁRIA; ANTÍGENOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1186/s12936-017-2144-x (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CRAVO, Pedro; MACHADO, Renato B.; LEITE, Juliana A; et al. In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate. Malaria Journal, London, BioMed Central Ltd, v. 17, n. 1, p. art. 20 1-9, 2018. Disponível em: < http://dx.doi.org/10.1186/s12936-017-2144-x > DOI: 10.1186/s12936-017-2144-x.
    • APA

      Cravo, P., Machado, R. B., Leite, J. A., Leda, T., Suwanarusk, R., Bittencourt, N., et al. (2018). In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate. Malaria Journal, 17( 1), art. 20 1-9. doi:10.1186/s12936-017-2144-x
    • NLM

      Cravo P, Machado RB, Leite JA, Leda T, Suwanarusk R, Bittencourt N, Albrecht L, Judice C, Lopes SCP, Lacerda MVG, Ferreira MU, Soares I da S, Goh YS, Bargieri DY, Nosten F, Russell B, Rénia L, Costa FTM. In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate [Internet]. Malaria Journal. 2018 ; 17( 1): art. 20 1-9.Available from: http://dx.doi.org/10.1186/s12936-017-2144-x
    • Vancouver

      Cravo P, Machado RB, Leite JA, Leda T, Suwanarusk R, Bittencourt N, Albrecht L, Judice C, Lopes SCP, Lacerda MVG, Ferreira MU, Soares I da S, Goh YS, Bargieri DY, Nosten F, Russell B, Rénia L, Costa FTM. In silico epitope mapping and experimental evaluation of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) as a malaria vaccine candidate [Internet]. Malaria Journal. 2018 ; 17( 1): art. 20 1-9.Available from: http://dx.doi.org/10.1186/s12936-017-2144-x

    Referências citadas na obra
    World Health Organization. World malaria report 2013. Geneva: World Health Organization; 2013.
    Malaria Vaccine Funders Group. Malaria vaccine technology roadmap. Geneva: World Health Organization; 2013.
    Russell B, Suwanarusk R, Borlon C, Costa FT, Chu CS, Rijken MJ, et al. A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood. 2011;118:e74–81.
    Leite JA, Bargieri DY, Carvalho BO, Albrecht L, Lopes SC, Kayano AC, et al. Immunization with the MAEBL M2 domain protects against lethal Plasmodium yoelii infection. Infect Immun. 2015;83:3781–92.
    Blair PL, Kappe SH, Maciel JE, Balu B, Adams JH. Plasmodium falciparum MAEBL is a unique member of the ebl family. Mol Biochem Parasitol. 2002;122:35–44.
    Kappe SH, Curley GP, Noe AR, Dalton JP, Adams JH. Erythrocyte binding protein homologues of rodent malaria parasites. Mol Biochem Parasitol. 1997;89:137–48.
    Kappe SH, Noe AR, Fraser TS, Blair PL, Adams JH. A family of chimeric erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci USA. 1998;95:1230–5.
    Noe AR, Adams JH. Plasmodium yoelii YM MAEBL protein is coexpressed and colocalizes with rhoptry proteins. Mol Biochem Parasitol. 1998;96:27–35.
    Michon P, Stevens JR, Kaneko O, Adams JH. Evolutionary relationships of conserved cysteine-rich motifs in adhesive molecules of malaria parasites. Mol Biol Evol. 2002;19:1128–42.
    Preiser P, Rénia L, Singh N, Balu B, Jarra W, Voza T, et al. Antibodies against MAEBL ligand domains M1 and M2 inhibit sporozoite development in vitro. Infect Immun. 2004;72:3604–8.
    Kariu T, Yuda M, Yano K, Chinzei Y. MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J Exp Med. 2002;195:1317–23.
    Heinson AI, Woelk CH, Newell ML. The promise of reverse vaccinology. Int Health. 2015;7:85–9.
    Reche PA, Glutting JP, Reinherz EL. Prediction of MHC class I binding peptides using profile motifs. Hum Immunol. 2002;63:701–9.
    Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56:405–19.
    Reche PA, Reinherz EL. Prediction of peptide-MHC binding using profiles. Methods Mol Biol. 2007;409:185–200.
    Rankpep. Prediction of binding peptides to Class I and Class II MHC molecules. http://imed.med.ucm.es/Tools/rankpep.html. Accessed 01 June 2016.
    IEBD.org. Free epitope database and prediction resource. http://www.iedb.org/. Accessed 30 June 2016.
    Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015;43:D405–12.
    Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics. 2009;61:1–13.
    NetMHCpan 2.4 Server. http://www.cbs.dtu.dk/services/NetMHCpan-2.4/. Accessed 10 july 2016.
    HLA peptide binding predictions. https://www-bimas.cit.nih.gov/molbio/hla_bind/. Accessed 30 July 2016.
    Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol. 1994;152:163–75.
    Hakenberg J, Nussbaum AK, Schild H, Rammensee HG, Kuttler C, Holzhütter HG, et al. MAPPP: MHC class I antigenic peptide processing prediction. Appl Bioinform. 2003;2:155–8.
    MAPPP. MHC-I antigenic peptide processing prediction. http://www.mpiib-berlin.mpg.de/MAPPP/. Accessed 08 Aug 2016.
    Singh H, Raghava GP. ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics. 2003;19:1009–14.
    NetMHCIIpan 3.1 Server. http://www.cbs.dtu.dk/services/NetMHCIIpan/. Accessed 12 Aug 2016.
    Nielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform. 2007;8:238.
    Nielsen M, Lund O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinform. 2009;10:296.
    BCPREDS. B-cell epitope prediction server. http://ailab.ist.psu.edu/bcpred/. Accessed 25 Aug 2016.
    El-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit. 2008;21:243–55.
    VaxiJen. Prediction of Protective Antigens and Subunit Vaccines. http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html. Accessed 03 Sept 2016.
    Doytchinova IA, Flower DR. Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine. 2007;25:856–66.
    Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007;8:4.
    Ray P, Sahoo N, Singh B, Kironde FA. Serum antibody immunoglobulin G of mice convalescent from Plasmodium yoelii infection inhibits growth of Plasmodium falciparum in vitro: blood stage antigens of P. falciparum involved in interspecies cross-reactive inhibition of parasite growth. Infect Immun. 1994;62:2354–61.
    Peng K, Goh YS, Siau A, Franetich JF, Chia WN, Ong AS, et al. Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection. Cell Microbiol. 2016;18:1739–50.
    Fraser T, Michon P, Barnwell JW, Noe AR, Al-Yaman F, Kaslow DC, et al. Expression and serologic activity of a soluble recombinant Plasmodium vivax Duffy binding protein. Infect Immun. 1997;65:2772–7.
    Snounou G, Singh B. Nested PCR analysis of Plasmodium parasites. Methods Mol Med. 2002;72:189–203.
    Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988;16:10881–90.
    Bitencourt AR, Vicentin EC, Jimenez MC, Ricci R, Leite JA, Costa FT, et al. Antigenicity and immunogenicity of Plasmodium vivax merozoite surface protein-3. PLoS ONE. 2013;8:e56061.
    Ghai M, Dutta S, Hall T, Freilich D, Ockenhouse CF. Identification, expression, and functional characterization of MAEBL, a sporozoite and asexual blood stage chimeric erythrocyte-binding protein of Plasmodium falciparum. Mol Biochem Parasitol. 2002;123:35–45.
    Kappe SH, Gardner MJ, Brown SM, Ross J, Matuschewski K, Ribeiro JM, et al. Exploring the transcriptome of the malaria sporozoite stage. Proc Natl Acad Sci USA. 2001;98:9895–900.
    Doolan DL, Dobaño C, Baird JK. Acquired immunity to malaria. Clin Microbiol Rev. 2009;22:13–36.
    Reyes C, Patarroyo ME, Vargas LE, Rodríguez LE, Patarroyo MA. Functional, structural, and immunological compartmentalisation of malaria invasive proteins. Biochem Biophys Res Commun. 2007;354:363–71.
    Xu L, Pei X, Berzins K, Chaudhuri A. Plasmodium yoelii: experimental evidences for the conserved epitopes between mouse and human malaria parasite, Plasmodium falciparum. Exp Parasitol. 2007;116:214–24.
    Carlton JM, Vinkenoog R, Waters AP, Walliker D. Gene synteny in species of Plasmodium. Mol Biochem Parasitol. 1998;93:285–94.
    Carlton J, Silva J, Hall N. The genome of model malaria parasites, and comparative genomics. Curr Issues Mol Biol. 2005;7:23–37.
    Holder AA, Freeman RR, Newbold CI. Serological cross-reaction between high molecular weight proteins synthesized in blood schizonts of Plasmodium yoelii, Plasmodium chabaudi and Plasmodium falciparum. Mol Biochem Parasitol. 1983;9:191–6.
    Taylor DW, Kim KJ, Munoz PA, Evans CB, Asofsky R. Monoclonal antibodies to stage-specific, species-specific, and cross-reactive antigens of the rodent malarial parasite, Plasmodium yoelii. Infect Immun. 1981;32:563–70.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020