Exportar registro bibliográfico


Metrics:

Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves (2017)

  • Authors:
  • Autor USP: FRESCHI, LUCIANO - IB
  • Unidade: IB
  • DOI: 10.1007/s11356-017-0744-1
  • Subjects: BOTÂNICA (CLASSIFICAÇÃO); COMPOSTOS VOLÁTEIS; ÓXIDO NÍTRICO; OZÔNIO; FOLHAS (PLANTAS)
  • Keywords: Croton floribundus; Methyl salicylate; Ozone; Nitrogen oxides
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11356-017-0744-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BISON, Josiane Valéria; CARDOSO-GUSTAVSON, Poliana; MORAES, Regina Maria de; et al. Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves. Environmental Science and Pollution Research, Heidelberg, v. No 2017, 2017. Disponível em: < httpdx.doi.org/10.1007/s11356-017-0744-1 > DOI: 10.1007/s11356-017-0744-1.
    • APA

      Bison, J. V., Cardoso-Gustavson, P., Moraes, R. M. de, Pedrosa, G. da S., Cruz, L. S., Freschi, L., & Souza, S. R. de. (2017). Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves. Environmental Science and Pollution Research, No 2017. doi:10.1007/s11356-017-0744-1
    • NLM

      Bison JV, Cardoso-Gustavson P, Moraes RM de, Pedrosa G da S, Cruz LS, Freschi L, Souza SR de. Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves [Internet]. Environmental Science and Pollution Research. 2017 ; No 2017Available from: httpdx.doi.org/10.1007/s11356-017-0744-1
    • Vancouver

      Bison JV, Cardoso-Gustavson P, Moraes RM de, Pedrosa G da S, Cruz LS, Freschi L, Souza SR de. Volatile organic compounds and nitric oxide as responses of a Brazilian tropical species to ozone: the emission profile of young and mature leaves [Internet]. Environmental Science and Pollution Research. 2017 ; No 2017Available from: httpdx.doi.org/10.1007/s11356-017-0744-1

    Referências citadas na obra
    Ahlfors R, Brosché M, Kangasjärvi J (2009) Ozone and nitric oxide interaction in Arabidopis thaliana. A role for ethylene? Plant Signalling & Behavior 4(9):878–879. https://doi.org/10.4161/psb.4.9.9428
    Ansi-Fabado MA, Oliván A, Munné-Bosch S (2013) A comparative study of the hormonal response to high temperatures and stress reiteration in three Laiatae species. Environ Exp Bot 94:57–65. https://doi.org/10.1016/j.envexpbot.2012.05.001
    Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37:S197–S219
    Bartram S, Jux A, Gleixner G, Boland W (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry 67(15):1661–1672. https://doi.org/10.1016/j.phytochem.2006.02.004
    Blande JD, Tiiva P, Oksanen E, Holopainen JK (2007) Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula × tremuloides) clones under ambient and elevated ozone concentrations in the field. Glob Chang Biol 13(12):2538–2550. https://doi.org/10.1111/j.1365-2486.2007.01453.x
    Blande JD, Li T, Holopainen JK (2010) Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 13(9):1172–1181. https://doi.org/10.1111/j.1461-0248.2010.01510.x
    Blande JD, Holopainen JK, Ninemets U (2014) Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ 37(8):1892–1904. https://doi.org/10.1111/pce.12352
    Calfapietra C, Fares S, Loreto F (2009) Volatile organic compounds from Italian vegetation and their interaction with ozone. Environ Pollut 157(5):1478–1486. https://doi.org/10.1016/j.envpol.2008.09.048
    Calfapietra C, Fares S, Manes F (2013) Role of biogenic organic compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Environ Pollut 183:71–80. https://doi.org/10.1016/j.envpol.2013.03.012
    Cardoso-Gustavson P, Bolsoni V, Pinheiro DO, Gromboni-Guaratini MT, Aidar MPM, Marabesi MA, Alves ES, Souza SR (2014) Ozone-induced responses in Croton floribundus Spreng. (Euphorbiaceae): metabolic cross-talk between volatile organic compounds and calcium oxalate crystal formation. PLoS One 9(8):e105072. https://doi.org/10.1371/journal.pone.0105072
    Choudhary DK, Bhavish NJ, Prakash A (2008) Volatiles as priming agents that initiate plant growth and defence responses. Curr Sci 94:595–604
    Codopolovici L, Niinemets U (2016) Environmental impacts on plant volatile emission. In: Blande JD, Glinwood R (eds) Deciphering chemical language in plant communication. Springer, London, pp 35–59. https://doi.org/10.1007/978-3-319-33498-1_2
    Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588. https://doi.org/10.1038/29087
    Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci 98(23):13454–13459. https://doi.org/10.1073/pnas.231178298
    Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440. https://doi.org/10.1080/07352680600899973
    Ederli L, Morettini R, Borgogni A, Wasternack C, Miersh O, Reale L, Ferranti F, Tosti N, Pasqualini S (2006) Interaction between nitric oxide and ethylene in the induction of alternative oxidize in ozone-treated tobacco plants. Plant Physiol 142(2):595–608. https://doi.org/10.1104/pp.106.085472
    Freschi L (2013) Nitric oxide and phytohormone interactions: current status and perspectives. Frontier in Plant Science 398:1–22
    Gouinguene SP, Turlings T (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129(3):1296–1299. https://doi.org/10.1104/pp.001941
    Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Science 9(11):529–533. https://doi.org/10.1016/j.tplants.2004.09.006
    Holopainen JK, Gerhenzon J (2010) Multiple stress factors and the emission of plant VOCs. Trends Plant Science 15:1360–1385
    Joutsensaari J, Loivam M, Vourinen T, Miettinen P, Nerg AM, Holopainen JK, Laaksonen A (2005) Nonoparticle formation by ozonolysis of inducible plant volatiles. Atmospheric and Physics Discuss 5(1):1–16. https://doi.org/10.5194/acpd-5-1-2005
    Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 197(16):8849–8855
    Llusià J, Peñuelas J, Gimeno BS (2002) Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations. Atmospheric Environmental 36(24):3931–3938. https://doi.org/10.1016/S1352-2310(02)00321-7
    Loreto F, Schnizler J (2010) Abiotic stresses and induced BVOCs. Trend Plant Science 15(3):154–166. https://doi.org/10.1016/j.tplants.2009.12.006
    Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24(4):361–367. https://doi.org/10.1093/treephys/24.4.361
    Melo NKG, Bianchetti RE, Lira BS, Oliveira PMR, Zuccarelli R, Dias DLO, Demarco D, Peres LEP, Rossi M, Freschi L (2016) Nitric oxide, ethylene and auxin crosstalk mediates greening and plastid development in etiolating tomato seedlings. Plant Physiol 170(4):2278–2294. https://doi.org/10.1104/pp.16.00023
    Moura BB, Souza SR, Segala EA (2014) Response of Brazilian native trees to acute ozone dose. Environmental Science Pollution Research 21(6):4220–4227. https://doi.org/10.1007/s11356-013-2326-1
    Pellegrini E, Cioni LP, Francini A, Lorenzini G, Nali C, Flamini G (2012) Volatiles emission patterns in poplar clones varying in response to ozone. Journal Chemical Ecology 38(7):924–932. https://doi.org/10.1007/s10886-012-0162-2
    Peñuelas J, Llusià J, Gimeno BS (1999) Effects of ozone concentrations on biogenic volatile organic compounds emission in the Mediterranean region. Environ Pollut 105(1):17–23. https://doi.org/10.1016/S0269-7491(98)00214-0
    Pinto DM, Blande JD, Souza SR, Nerg A, Holopainen JK (2010) Plant volatile organic compound (VOCs) in ozone polluted atmospheres: the ecological effects. Journal Chemical Ecology 36(1):22–24. https://doi.org/10.1007/s10886-009-9732-3
    Shu Y, Atkinson R (1994) Rate constants for the gas-phase reactions of 03 with a series of terpenes and OH radical formation from the 03 reactions with sesquiterpenes at 296 K +− 2. In J Chem Kinet 26(12):1193–1205. https://doi.org/10.1002/kin.550261207
    Souza SR, Pagliuso JD (2009) Design and assembly of an experimental laboratory for the study of atmosphere-plant interactions in the system of fumigation chambers. Environmental Monitoring Assessment 158(1-4):243–249. https://doi.org/10.1007/s10661-008-0578-x
    Souza SR, Blande JD, Holopainen J (2013) Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean. Environ Pollut 179:111–129. https://doi.org/10.1016/j.envpol.2013.03.065
    Szalai G, Kellos T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant ant regulatory molecule in plants under abiotic stress conditions. Journal Plant Growth Regulation 28(1):66–80. https://doi.org/10.1007/s00344-008-9075-2
    Velikova V, Pinelli P, Paqualini S, Reale L, Ferranti F, Loreto F (2005) Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol 166(2):419–426. https://doi.org/10.1111/j.1469-8137.2005.01409.x
    Velikova V, Fares S, Loreto F (2008) Isoprese and nitric oxide reduce damages in leaves exposed to oxidative stress. Plant Cell Environ 31(12):1882–1894. https://doi.org/10.1111/j.1365-3040.2008.01893.x
    Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5(5):283–291. https://doi.org/10.1038/nchembio.158
    Vollenweider P, Gunthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137(3):455–467. https://doi.org/10.1016/j.envpol.2005.01.032

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020