Generalize or die: operating systems support for memristor-based accelerators (2017)
- Authors:
- Autor USP: LEJBMAN, ALFREDO GOLDMAN VEL - IME
- Unidade: IME
- DOI: 10.1109/ICRC.2017.8123649
- Subjects: ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES; SISTEMAS OPERACIONAIS; MICROPROCESSADORES; INTELIGÊNCIA ARTIFICIAL
- Keywords: memristorsm; field programmable gate arrays
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2017
- Source:
- Título: Proceedings
- Conference titles: International Conference on Rebooting Computing (ICRC)
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BRUEL, Pedro et al. Generalize or die: operating systems support for memristor-based accelerators. 2017, Anais.. Piscataway: IEEE, 2017. Disponível em: https://doi.org/10.1109/ICRC.2017.8123649. Acesso em: 10 fev. 2026. -
APA
Bruel, P., Chalamalasetti, S. R., Dalton, C., Hajj, I. E., Goldman, A., Graves, C., et al. (2017). Generalize or die: operating systems support for memristor-based accelerators. In Proceedings. Piscataway: IEEE. doi:10.1109/ICRC.2017.8123649 -
NLM
Bruel P, Chalamalasetti SR, Dalton C, Hajj IE, Goldman A, Graves C, Hwu W-mei, Laplante P, Milojicic D, Ndu G, Strachan JP. Generalize or die: operating systems support for memristor-based accelerators [Internet]. Proceedings. 2017 ;[citado 2026 fev. 10 ] Available from: https://doi.org/10.1109/ICRC.2017.8123649 -
Vancouver
Bruel P, Chalamalasetti SR, Dalton C, Hajj IE, Goldman A, Graves C, Hwu W-mei, Laplante P, Milojicic D, Ndu G, Strachan JP. Generalize or die: operating systems support for memristor-based accelerators [Internet]. Proceedings. 2017 ;[citado 2026 fev. 10 ] Available from: https://doi.org/10.1109/ICRC.2017.8123649 - The influence of organizational factors on inter-team knowledge sharing effectiveness in agile environments
- Improving the performance of actor model runtime environments on multicore and manycore platforms
- Towards automatic actor pinning on multi-core architectures
- A simple BSP-based model to predict execution time in GPU applications
- A comparison of GPU execution time prediction using machine learning and analytical modeling
- Message from the program committee co-chairs. [Apresentação]
- Useful statistical methods for human factors research in software engineering: a discussion on validation with quantitative data
- Trying to increase the mature use of agile practices by Group Development Psychology Training: an experiment
- Scheduling moldable BSP tasks on clouds
- A multithreaded resolution of the service selection problem based on domain decomposition and work stealing
Informações sobre o DOI: 10.1109/ICRC.2017.8123649 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2865057.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
