Exportar registro bibliográfico


Metrics:

Habitat‑dependent niche partitioning between colour morphs of the algal‑dwelling shrimp Hippolyte obliquimanus (2017)

  • Authors:
  • Autor USP: FLORES, AUGUSTO ALBERTO VALERO - CEBIMAR
  • Unidade: CEBIMAR
  • DOI: 10.1007/s00227-017-3247-1
  • Assunto: ECOLOGIA MARINHA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Marine Biology
    • ISSN: 1432-1793
    • Volume/Número/Paginação/Ano: v. 164, article 215, p. 1-12, 2017
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00227-017-3247-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DUARTE, Rafael Campos; LEAL, Miguel C; FLORES, Augusto Alberto Valero; VINAGRE, Catarina. Habitat‑dependent niche partitioning between colour morphs of the algal‑dwelling shrimp Hippolyte obliquimanus. Marine Biology, Berlim, v. 164, p. 1-12, 2017. Disponível em: < https://link.springer.com/article/10.1007/s00227-017-3247-1 > DOI: 10.1007/s00227-017-3247-1.
    • APA

      Duarte, R. C., Leal, M. C., Flores, A. A. V., & Vinagre, C. (2017). Habitat‑dependent niche partitioning between colour morphs of the algal‑dwelling shrimp Hippolyte obliquimanus. Marine Biology, 164, 1-12. doi:10.1007/s00227-017-3247-1
    • NLM

      Duarte RC, Leal MC, Flores AAV, Vinagre C. Habitat‑dependent niche partitioning between colour morphs of the algal‑dwelling shrimp Hippolyte obliquimanus [Internet]. Marine Biology. 2017 ; 164 1-12.Available from: https://link.springer.com/article/10.1007/s00227-017-3247-1
    • Vancouver

      Duarte RC, Leal MC, Flores AAV, Vinagre C. Habitat‑dependent niche partitioning between colour morphs of the algal‑dwelling shrimp Hippolyte obliquimanus [Internet]. Marine Biology. 2017 ; 164 1-12.Available from: https://link.springer.com/article/10.1007/s00227-017-3247-1

    Referências citadas na obra
    Ahnesjö J, Forsman A (2006) Differential habitat selection by pygmy grasshopper color morphs; interactive effects of temperature and predator avoidance. Evol Ecol 20:235–257. doi: 10.1007/s10682-006-6178-8
    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x
    Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi: 10.1111/j.1461-0248.2011.01662.x
    Bearhop S, Adams CE, Waldron S et al (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012. doi: 10.1111/j.0021-8790.2004.00861.x
    Bessa F, Baeta A, Marques JC (2014) Niche segregation amongst sympatric species at exposed sandy shores with contrasting wrack availabilities illustrated by stable isotopic analysis. Ecol Ind 36:694–702. doi: 10.1016/j.ecolind.2013.09.026
    Bolnick DI (2001) Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410:463–466. doi: 10.1038/35068555
    Bolnick DI, Svanbäck R, Fordyce JA et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. doi: 10.1086/343878
    Bolnick DI, Amarasekare P, Araújo MS, Bürger R et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192
    Booth CL (1990) Evolutionary significance of ontogenetic colour change in animals. Biol J Linn Soc 40:125–163. doi: 10.1111/j.1095-8312.1990.tb01973.x
    Bourke P, Magnan P, Rodríguez M, Rodriguez MA (1997) Individual variations in habitat use and morphology in brook charr. J Fish Biol 51:783–794. doi: 10.1111/j.1095-8649.1997.tb01999.x
    Caro T, Sherratt TN, Stevens M (2016) The ecology of multiple colour defences. Evol Ecol 30:797–809. doi: 10.1007/s10682-016-9854-3
    Correa SB, Winemiller KO (2014) Niche partitioning among frugivorous fishes in response to fluctuating resources in the Amazonian floodplain forest. Ecology 95:210–224. doi: 10.1890/13-0393.1
    Duarte RC, Flores AAV (2017) Morph-specific habitat and sex distribution in the caridean shrimp Hippolyte obliquimanus. J Mar Biol Assoc UK 97:235–242. doi: 10.1017/S0025315416000230
    Duarte RC, Stevens M, Flores AAV (2016) Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp. BMC Evol Biol 16:218. doi: 10.1186/s12862-016-0796-8
    Forsman A, Ahnesjö J, Caesar S, Karlsson M (2008) A model of ecological and evolutionary consequences of color polymorphism. Ecology 89:34–40. doi: 10.1890/07-0572.1
    Fry B (1999) Using stable isotopes to monitor watershed influences on aquatic trophodynamics. Can J Fish Aquat Sci 56:2167–2171. doi: 10.1139/f99-152
    Godoy EAS, Coutinho R (2002) Can artificial beds of plastic mimics compensate for seasonal absence of natural beds of Sargassum furcatum? ICES J Mar Sci 59:111–115. doi: 10.1006/jmsc.2002.1220
    González-Solís J, Oro D, Jover L et al (1997) Trophic niche width and overlap of two sympatric gulls in the southwestern Mediterranean. Oecologia 112:75–80. doi: 10.1007/s004420050285
    Hall M, Bell S (1988) Response of small motile epifauna to complexity of epiphytic algae on seagrass blades. J Mar Res 46:613–630. doi: 10.1357/002224088785113531
    Herder F, Pfaender J, Schliewen UK (2008) Adaptive sympatric speciation of polychromatic “roundfin” sailfin silverside fish in Lake Matano (Sulawesi). Evolut (N Y) 62:2178–2195. doi: 10.1111/j.1558-5646.2008.00447.x
    Howard R (1984) The trophic ecology of caridean shrimps in an eelgrass community. Aquat Bot 18:155–174. doi: 10.1016/0304-3770(84)90085-8
    Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. doi: 10.1111/j.1365-2656.2011.01806.x
    Jacobucci GB, Leite FPP (2014) The role of epiphytic algae and different species of Sargassum in the distribution and feeding of herbivorous amphipods. Lat Am J Aquat Res 42:353–363. doi: 10.3856/vol42-issue2-fulltext-6
    Jacobucci GB, Tanaka MO, Leite FPP (2009) Factors influencing temporal variation of a Sargassum filipendula (Phaeophyta: Fucales) bed in a subtropical shore. J Mar Biol Assoc UK 89:315. doi: 10.1017/S0025315409002306
    Jormalainen V, Tuomi J (1989) Sexual differences in habitat selection and activity of the colour polymorphic isopod Idotea baltica. Anim Behav 38:576–585. doi: 10.1016/S0003-3472(89)80002-8
    Kadye WT, Chakona A, Jordaan MS (2016) Swimming with the giant: coexistence patterns of a new redfin minnow Pseudobarbus skeltoni from a global biodiversity hot spot. Ecol Evol 6:7141–7155. doi: 10.1002/ece3.2328
    Karpestam E, Forsman A (2011) Dietary differences among colour morphs of pygmy grasshoppers revealed by behavioural experiments and stable isotopes. Evol Ecol Res 13:461–477
    Komada T, Anderson MR, Dorfmeier CL (2008) Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and ∆14C: comparison of fumigation and direct acidification by hydrochloric acid. Limnol Oceanogr Methods 6:254–262. doi: 10.4319/lom.2008.6.254
    Kusche H, Elmer KR, Meyer A (2015) Sympatric ecological divergence associated with a color polymorphism. BMC Biol 13:82. doi: 10.1186/s12915-015-0192-7
    Lattanzio MS, Miles DB (2014) Ecological divergence among colour morphs mediated by changes in spatial network structure associated with disturbance. J Anim Ecol 83:1490–1500. doi: 10.1111/1365-2656.12252
    Lattanzio MS, Miles DB (2016) Trophic niche divergence among colour morphs that exhibit alternative mating tactics. R Soc Open Sci 3:150531. doi: 10.1098/rsos.150531
    Leite F, Turra A (2003) Temporal variation in Sargassum biomass, Hypnea epiphytism and associated fauna. Braz Arch Biol Technol 46:665–671. doi: 10.1590/S1516-89132003000400021
    MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385. doi: 10.1086/282505
    Maerz JC, Myers EM, Adams DC (2006) Trophic polymorphism in a terrestrial salamander. Evol Ecol Res 8:23–35
    Martin-Smith KM (1993) Abundance of mobile epifauna: the role of habitat complexity and predation by fishes. J Exp Mar Biol Ecol 174:243–260. doi: 10.1016/0022-0981(93)90020-O
    May RM (1973) On relationships among various types of population models. Am Nat 107:46–57. doi: 10.2307/2459565
    Merilaita S, Jormalainen V (1997) Evolution of sex differences in microhabitat choice and colour polymorphism in Idotea baltica. Anim Behav 54:769–778. doi: 10.1006/anbe.1996.0490
    Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. doi: 10.1016/0016-7037(84)90204-7
    Muschick M, Indermaur A, Salzburger W (2012) Convergent evolution within an adaptive radiation of cichlid fishes. Curr Biol 22:2362–2368. doi: 10.1016/j.cub.2012.10.048
    Nylin S, Gotthard K (1998) Plasticity in life-history traits. Annu Rev Entomol 43:63–83. doi: 10.1146/annurev.ento.43.1.63
    Parnell A (2016) Simmr: a stable isotope mixing model. https://cran.r-project.org/package=simmr . Accessed 19 Nov 2016
    Parnell AC, Phillips DL, Bearhop S et al (2013) Bayesian stable isotope mixing models. Environmetrics 24:387–399. doi: 10.1002/env.2221
    Phillips DL (2012) Converting isotope values to diet composition: the use of mixing models. J Mammal 93:342–352. doi: 10.1644/11-MAMM-S-158.1
    Phillips DL, Inger R, Bearhop S et al (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 835:823–835. doi: 10.1139/cjz-2014-0127
    Pianka ER (1981) Competition and niche theory. Theor Ecol 8:167–196. doi: 10.1002/jlac.1993199301120
    Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. doi: 10.2307/3071875
    Power M, O’Connell MF, Dempson JB (2005) Ecological segregation within and among Arctic char morphotypes in Gander Lake, Newfoundland. Environ Biol Fishes 73:263–274. doi: 10.1007/s10641-005-2137-4
    R Development Core Team (2016) R: a language and environment for statistical computing. https://cran.r-project.org/ . Accessed 22 Oct 2015
    Ricklefs RE, Nealen P (1998) Lineage-dependent rates of evolutionary diversification: analysis of bivariate ellipses. Funct Ecol 12:871–885. doi: 10.1046/j.1365-2435.1998.00263.x
    Rossi F, Olabarria C, Incera M, Garrido J (2010) The trophic significance of the invasive seaweed Sargassum muticum in sandy beaches. J Sea Res 63:52–61. doi: 10.1016/j.seares.2009.09.005
    Roughgarden J (1974) Niche width: biogeographic patterns among Anolis lizard populations. Am Nat 108:429–442. doi: 10.1086/282924
    Russo AR (1990) The role of seaweed complexity in structuring Hawaiian epiphytal amphipod communities. Hydrobiologia 194:1–12. doi: 10.1007/BF00012107
    Ruxton G, Sherratt T, Speed M (2004) Avoiding attack. Oxford University Press, Oxford
    Sebastiano S, Antonio R, Fabrizio O et al (2012) Different season, different strategies: feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecol 43:42–50. doi: 10.1016/j.actao.2012.05.001
    Silva LS, Miranda LB, Castro Filho BM (2005) Numerical study of circulation and thermohaline structure in the São Sebastião channel. Rev Braz Geofish 23:407–425. doi: 10.1590/S0102-261X2005000400005
    Soberon J, Nakamura M (2009) Niches and distributional areas. Concepts, methods, and assumptions. Proc Natl Acad Sci USA 106:19644–19650
    Stevens M, Lown AE, Wood LE (2014) Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats. PLoS One 9:1–31. doi: 10.1371/journal.pone.0115586
    Strong DR (1982) Harmonious coexistence of hispine beetles on Heliconia in experimental and natural communities. Ecology 63:1039–1049. doi: 10.2307/1937243
    Stuart-Fox D, Moussalli A (2009) Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philos Trans R Soc Lond B Biol Sci 364:463–470. doi: 10.1098/rstb.2008.0254
    Svanbäck R, Bolnick DI (2005) Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol Ecol Res 7:993–1012
    Svanbäck R, Bolnick DI (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc R Soc B Biol Sci 274:839–844. doi: 10.1098/rspb.2006.0198
    Svanbäck R, Eklöv P (2002) Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch. Oecologia 131:61–70. doi: 10.1007/s00442-001-0861-9
    Tinker MT, Bentall G, Estes JA (2008) Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc Natl Acad Sci USA 105:560–565. doi: 10.1073/pnas.0709263105
    Todd P, Briers R, Ladle R, Middleton F (2006) Phenotype-environment matching in the shore crab (Carcinus maenas). Mar Biol 148:1357–1367. doi: 10.1007/s00227-005-0159-2
    Zalewski M, Dudek-Godeau D, Tiunov AV et al (2015) Wing morphology is linked to stable isotope composition of nitrogen and carbon in ground beetles (Coleoptera: Carabidae). Eur J Entomol 112:810–817. doi: 10.14411/eje.2015.072
    Zupo V, Nelson W (1999) Factors influencing the association patterns of Hippolyte zostericola and Palaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida. Mar Biol 134:181–190. doi: 10.1007/s002270050536

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021