Exportar registro bibliográfico


Metrics:

Pre-processing and transfer entropy measures in motor neurons controlling limb movements (2017)

  • Authors:
  • Autor USP: MACIEL, CARLOS DIAS - EESC
  • Unidade: EESC
  • DOI: 10.1007/s10827-017-0656-6
  • Subjects: REDES NEURAIS; TEORIA DA INFORMAÇÃO; ANÁLISE ESPECTRAL; ENGENHARIA ELÉTRICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10827-017-0656-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SANTOS, Fernando P.; MACIEL, Carlos Dias; NEWLAND, Philip L. Pre-processing and transfer entropy measures in motor neurons controlling limb movements. Journal of Computational Neuroscience, New York, NY, CrossMark, v. 43, n. 2, p. 159-171, 2017. Disponível em: < http://dx.doi.org/10.1007/s10827-017-0656-6 > DOI: 10.1007/s10827-017-0656-6.
    • APA

      Santos, F. P., Maciel, C. D., & Newland, P. L. (2017). Pre-processing and transfer entropy measures in motor neurons controlling limb movements. Journal of Computational Neuroscience, 43( 2), 159-171. doi:10.1007/s10827-017-0656-6
    • NLM

      Santos FP, Maciel CD, Newland PL. Pre-processing and transfer entropy measures in motor neurons controlling limb movements [Internet]. Journal of Computational Neuroscience. 2017 ; 43( 2): 159-171.Available from: http://dx.doi.org/10.1007/s10827-017-0656-6
    • Vancouver

      Santos FP, Maciel CD, Newland PL. Pre-processing and transfer entropy measures in motor neurons controlling limb movements [Internet]. Journal of Computational Neuroscience. 2017 ; 43( 2): 159-171.Available from: http://dx.doi.org/10.1007/s10827-017-0656-6

    Referências citadas na obra
    Angarita-Jaimes, N., Dewhirst, O. P., Simpson, D. M., Kondoh, Y., Allen, R., & Newland, P. L. (2012). The dynamics of analogue signaling in local networks controlling limb movement. European Journal of Neuroscience, 36(9), 3269–3282.
    Barnett, L., & Seth, A. K. (2011). Behaviour of Granger causality under filtering: theoretical invariance and practical application. Journal of Neuroscience Methods, 201(2), 404–419.
    Barnett, L., Barrett, A. B., & Seth, A. K. (2009). Granger causality and transfer entropy are equivalent for Gaussian variables. Physical Review Letters, 103(23), 238701.
    Bässler, U. (1993). The femur-tibia control system of stick insects—a model system for the study of the neural basis of joint control. Brain Research Reviews, 18(2), 207–226.
    Benda, J., Longtin, A., & Maler, L. (2005). Spike-frequency adaptation separates transient communication signals from background oscillations. Journal of Neuroscience, 25(9), 2312–2321.
    Burrows, M. (1987). Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust. Journal of Neuroscience, 7(4), 1064–1080.
    Burrows, M. (1988). Responses of spiking local interneurones in the locust to proprioceptive signals from the femoral chordotonal organ. Journal of Comparative Physiology A, 164(2), 207–217.
    Burrows, M. (1996). The Neurobiology of an Insect Brain. Oxford: Oxford University Press.
    Buschmann, T., Ewald, A., von Twickel, A., & Büschges, A. (2015). Controlling legs for locomotion—Insights from robotics and neurobiology. Bioinspiration & Biomimetics, 10(4), 041001.
    Cook, D. L., Schwindt, P. C., Grande, L. A., & Spain, W. J. (2003). Synaptic depression in the localization of sound. Nature, 421(6918), 66–70.
    Dewhirst, O. P., Angarita-Jaimes, N., Simpson, D. M., Allen, R., & Newland, P. L. (2013). A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs. Journal of Computational Neuroscience, 34(1), 39–58.
    Dolan, K. T., & Spano, M. L. (2001). Surrogate for nonlinear time series analysis. Physical Review E, 64(4), 046128.
    Ebeling, W. (2002). Entropies and predictability of nonlinear processes and time series. In International Conference on Computational Science (pp. 1209–1217). Berlin Heidelberg: Springer.
    Endo, W., Santos, F. P., Simpson, D., Maciel, C. D., & Newland, P. L. (2015). Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. Journal of Computational Neuroscience, 38(2), 427–438.
    Faes, L., & Porta, A. (2014). Conditional entropy-based evaluation of information dynamics in physiological systems. In Directed information measures in neuroscience (pp. 61–86). Berlin Heidelberg: Springer.
    Field, L. H., & Burrows, M. (1982). Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. Journal of Experimental Biology, 101(1), 265–285.
    Florin, E., Gross, J., Pfeifer, J., Fink, G. R., & Timmermann, L. (2010). The effect of filtering on Granger causality based multivariate causality measures. NeuroImage, 50(2), 577–588.
    Gamble, E. R., & DiCaprio, R. A. (2003). Nonspiking and spiking proprioceptors in the crab: white noise analysis of spiking CB-chordotonal organ afferents. Journal of Neurophysiology, 89(4), 1815–1825.
    Golyandina, N., & Zhigljavsky, A. (2013). Singular Spectrum Analysis for time series. Berlin Heidelberg: Springer-Verlag. http://www.springer.com/br/book/9783642349126 .
    Gourevitch, B., & Eggermont, J. J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.
    Grazzini, J. (2012). Analysis of the emergent properties: stationarity and ergodicity. Journal of Artificial Societies and Social Simulation, 15(2), 7.
    Grzegorczyk, M., & Husmeier, D. (2009). Non-stationary continuous dynamic Bayesian networks. Advances in Neural Information Processing Systems, 682–690.
    Hassani, H. (2007). Singular spectrum analysis: methodology and comparison. Journal of Data Science, 5(2), 239–257.
    Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality detection based on information-theoretic approaches in time series analysis. Physics Reports, 441(1), 1–46.
    Ince, R. A., Mazzoni, A., Bartels, A., Logothetis, N. K., & Panzeri, S. (2012). A novel test to determine the signi cancer of neural selectivity to single and multiple potentially correlated stimulus features. Journal of Neuroscience Methods, 210(1), 49–65.
    Kaiser, A., & Schreiber, T. (2002). Information transfer in continuous processes. Physica D: Nonlinear Phenomena, 166(1), 43–62.
    Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis. New York: Cambridge University Press. http://dl.acm.org/citation.cfm?id=289372 .
    Kittmann, R. (1997). Neural mechanisms of adaptive gain control in a joint control loop: muscle force and motoneuronal activity. Journal of Experimental Biology, 200(9), 1383–1402.
    Knoblauch, A., & Sommer, F. T. (2016). Structural plasticity, effectual connectivity, and memory in cortex. Frontiers in Neuroanatomy, 10, 63.
    Kondoh, Y., Okuma, J., & Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5), 1829–1842.
    Kovač, M. (2014). The bioinspiration design paradigm: A perspective for soft robotics. Soft Robotics, 1(1), 28–37.
    Lee, J., Nemati, S., Silva, I., Edwards, B. A., Butler, J. P., & Malhotra, A. (2012). Transfer entropy estimation and directional coupling change detection in biomedical time series. Biomedical Engineering Online, 11(1), 19.
    Meruelo, A. C., Simpson, D. M., Veres, S. M., & Newland, P. L. (2016). Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron. Neural Networks, 75, 56–65.
    Nawrot, M. P. (2010). Analysis and interpretation of interval and count variability in neural spike trains. In Analysis of parallel spike trains (pp. 37–58). Boston: Springer. https://link.springer.com/chapter/10.1007%2F978-1-4419-5675-0_3 .
    Newland, P. L. (1991). Morphology and somatotopic organisation of the central projections of afferents from tactile hairs on the hind leg of the locust. Journal of Comparative Neurology, 312(4), 493–508.
    Newland, P. L., & Kondoh, Y. (1997a). Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. Journal of Neurophysiology, 77(4), 1731–1746.
    Newland, P. L., & Kondoh, Y. (1997b). Dynamics of neurons controlling movements of a locust hind leg III. Extensor tibiae motor neurons. Journal of Neurophysiology, 77(6), 3297–3310.
    Orlandi, J. G., Stetter, O., Soriano, J., Geisel, T., & Battaglia, D. (2014). Transfer entropy reconstruction and labeling of neuronal connections from simulated calcium imaging. PloS One, 9(6), e98842.
    Palus, M., & Novotná, D. (1998). Detecting modes with nontrivial dynamics embedded in colored noise: Enhanced Monte Carlo SSA and the case of climate oscillations. Physics Letters A, 248(2), 191–202.
    Pampu, N. C., Vicente, R., Muresan, R. C., Priesemann, V., Siebenhuhner, F., & Wibral, M. (2013, July). Transfer entropy as a tool for reconstructing interaction delays in neural signals. In Signals, Circuits and Systems (ISSCS), 2013 International Symposium on (pp. 1–4). IEEE.
    Prescott, S. A., & Sejnowski, T. J. (2008). Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms. Journal of Neuroscience, 28(50), 13649–13661.
    Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461.
    Schreiber, T., & Schmitz, A. (2000). Surrogate time series. Physica D: Nonlinear Phenomena, 142(3), 346–382.
    Schroeder, K. E., Irwin, Z. T., Gaidica, M., Bentley, J. N., Patil, P. G., Mashour, G. A., & Chestek, C. A. (2016). Disruption of corticocortical information transfer during ketamine anesthesia in the primate brain. NeuroImage, 134, 459–465.
    Silchenko, A. N., Adamchic, I., Pawelczyk, N., Hauptmann, C., Maarouf, M., Sturm, V., & Tass, P. A. (2010). Data-driven approach to the estimation of connectivity and time delays in the coupling of interacting neuronal subsystems. Journal of Neuroscience Methods, 191(1), 32–44.
    Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J., & Jarvis, E. D. (2006). Computational inference of neural information flow networks. PLoS Computational Biology, 2(11), e161.
    Therrien, C. W. (1992). Discrete random signals and statistical signal processing. Englewood Cliffs: Prentice Hall.
    Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1), 95–126.
    Venema, V., Ament, F., & Simmer, C. (2006). A stochastic iterative amplitude adjusted fourier transform algorithm with improved accuracy. Nonlinear Processes in Geophysics, 13(3), 321–328.
    Vidal-Gadea, A. G., Jing, X., Simpson, D., Dewhirst, O. P., Kondoh, Y., Allen, R., & Newland, P. L. (2010). Coding characteristics of spiking local interneurons during imposed limb movements in the locust. Journal of Neurophysiology, 103(2), 603–615.
    Vitanza, A., Patané, L., & Arena, P. (2015). Spiking neural controllers in multi-agent competitive systems for adaptive targeted motor learning. Journal of the Franklin Institute, 352(8), 3122–3143.
    Watson, A. H., & Burrows, M. (1987). Immunocytochemical and pharmacological evidence for GABAergic spiking local interneurons in the locust. Journal of Neuroscience, 7(6), 1741–1751.
    Wibral, M., Pampu, N., Priesemann, V., Siebenhühner, F., Seiwert, H., Lindner, M., & Vicente, R. (2013). Measuring information-transfer delays. PloS One, 8(2), e55809.
    Wibral, M., Vicente, R., & Lindner, M. (2014). Transfer entropy in neuroscience. In Directed Information Measures in Neuroscience (pp. 3–36). Berlin Heidelberg: Springer.
    Wilmer, A., de Lussanet, M., & Lappe, M. (2012). Time-delayed mutual information of the phase as a measure of functional connectivity. PloS One, 7(9), e44633.
    Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F. J., & Wibral, M. (2014). Efficient transfer entropy analysis of non-stationary neural time series. PloS One, 9(7), e102833.
    Yang, C., Jeannès, R. L. B., Faucon, G., & Shu, H. (2013). Detecting information flow direction in multivariate linear and nonlinear models. Signal Processing, 93(1), 304–312.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020