The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton–Milner family (2017)
- Authors:
- USP affiliated authors: KOHAYAKAWA, YOSHIHARU - IME ; HAN, JIE - IME
- Unidade: IME
- DOI: 10.1090/proc/13221
- Subjects: TEORIA DOS GRAFOS; COMBINATÓRIA
- Keywords: intersecting families; Hilton--Milner theorem; Erd\H{o}s--Ko--Rado theorem
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 2017
- Source:
- Título: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 145, n. 1, p. 73-87, 2017
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
-
ABNT
HAN, Jie e KOHAYAKAWA, Yoshiharu. The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton–Milner family. Proceedings of the American Mathematical Society, v. 145, n. 1, p. 73-87, 2017Tradução . . Disponível em: https://doi.org/10.1090/proc/13221. Acesso em: 31 out. 2024. -
APA
Han, J., & Kohayakawa, Y. (2017). The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton–Milner family. Proceedings of the American Mathematical Society, 145( 1), 73-87. doi:10.1090/proc/13221 -
NLM
Han J, Kohayakawa Y. The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton–Milner family [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 1): 73-87.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/13221 -
Vancouver
Han J, Kohayakawa Y. The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton–Milner family [Internet]. Proceedings of the American Mathematical Society. 2017 ; 145( 1): 73-87.[citado 2024 out. 31 ] Available from: https://doi.org/10.1090/proc/13221 - A practical minimal perfect hashing method
- Evolution of random subgraphs of the cube
- On Richardson's model on the hypercube
- The Turan theorem for random graphs
- Embedding graphs with bounded degree in sparse pseudorandom graphs
- Universality and tolerance
- Hereditary properties of triple systems
- An optimal algorithm for checking regularity
- Searching in Random partially ordered sets
- Discrepancy and eigenvalues of Cayley graphs
Informações sobre o DOI: 10.1090/proc/13221 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2863255.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas