Exportar registro bibliográfico


The depleted mineralization of the fungicide chlorothalonil derived from loss in soil microbial diversity (2017)

  • Authors:
  • Unidade: CENA
  • DOI: 10.1038/s41598-017-14803-0
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Scientific Reports
    • Volume/Número/Paginação/Ano: v. 7, article 14646, 2017
  • DOI
    Informações sobre o DOI: 10.1038/s41598-017-14803-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOUZA, Adijailton José de; ANDRADE, Pedro Avelino Maia de; PEREIRA, Arthur Prudêncio de Araújo; et al. The depleted mineralization of the fungicide chlorothalonil derived from loss in soil microbial diversity. Scientific Reports, London, v. 7, 2017. DOI: 10.1038/s41598-017-14803-0.
    • APA

      Souza, A. J. de, Andrade, P. A. M. de, Pereira, A. P. de A., Andreote, F. D., Tornisielo, V. L., & Regitano, J. B. (2017). The depleted mineralization of the fungicide chlorothalonil derived from loss in soil microbial diversity. Scientific Reports, 7. doi:10.1038/s41598-017-14803-0
    • NLM

      Souza AJ de, Andrade PAM de, Pereira AP de A, Andreote FD, Tornisielo VL, Regitano JB. The depleted mineralization of the fungicide chlorothalonil derived from loss in soil microbial diversity. Scientific Reports. 2017 ; 7
    • Vancouver

      Souza AJ de, Andrade PAM de, Pereira AP de A, Andreote FD, Tornisielo VL, Regitano JB. The depleted mineralization of the fungicide chlorothalonil derived from loss in soil microbial diversity. Scientific Reports. 2017 ; 7

    Referências citadas na obra
    Philippot, P. et al. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal 7(8), 1609–1619, https://doi.org/10.1038/ismej.2013.34 (2013).
    Roger, F., Bertilsson, S., Langenheder, S., Ahmed, O. & Gamfeldt, L. Multiple dimensions of bacterial diversity unrelated to functioning, stability and multifunctionality. PeerJ PrePrints 4, 1–14, https://doi.org/10.7287/peerj.preprints.1688v1 (2016).
    Wertz, S. et al. Maintenance of soil functioning following erosion of microbial diversity. Environmental Microbiology 8, 2162–2169, https://doi.org/10.1111/j.1462-2920.2006.01098.x (2006).
    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. American journal of botany 98, 572–592, https://doi.org/10.3732/ajb.1000364 (2011).
    Peter, H. et al. Function-specific response to depletion of microbial diversity. The ISME journal 5, 351–361, https://doi.org/10.1038/ismej.2010.119 (2011).
    Fetzer, I. et al. The extent of functional redundancy changes as species’ roles shift in different environments. Proceedings of the National Academy of Sciences 112, 14888–14893, https://doi.org/10.1073/pnas.1505587112 (2015).
    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology letters 9, 1146–1156, https://doi.org/10.1111/j.1461-0248.2006.00963.x (2006).
    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences 104, 18123–18128, https://doi.org/10.1073/pnas.0709069104 (2007).
    Hillebrand, H. & Cardinale, B. J. Consumer effects decline with prey diversity. Ecology Letters 7, 192–201, https://doi.org/10.1111/j.1461-0248.2004.00570.x (2004).
    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992, https://doi.org/10.1038/nature05202 (2006).
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences 105, 11512–11519, https://doi.org/10.1073/pnas.0801925105 (2008).
    Downing, A. L. Relative effects of species composition and richness on ecosystem properties in ponds. Ecology 86, 701–715, https://doi.org/10.1890/03-0239 (2005).
    Schimel, J. Ecosystem consequences of microbial diversity and community structure.Ecological. Studies 113, 239–254 (1995).
    Giller, K. E., Witter, E. & McGrath, S. P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry 30, 1389–1414, https://doi.org/10.1016/S0038-0717(97)00270-8 (1998).
    Griffiths, B. S., Bonkowski, M., Roy, J. & Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology 16, 49–61, https://doi.org/10.1016/S0929-1393(00)00081-0 (2001).
    Cravo-Laureau, C. et al. Role of environmental fluctuations and microbial diversity in degradation of hydrocarbons in contaminated sludge. Research in Microbiology 162, 888–895, https://doi.org/10.1016/j.resmic.2011.04.011 (2011).
    Barrios, E. Soil biota, ecosystem services and land productivity. Ecological Economics 64, 269–285, https://doi.org/10.1016/j.ecolecon.2007.03.004 (2007).
    Hartmann, M., Frey, B., Mayer, J., Mader, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal 9, 1177–1194, https://doi.org/10.1038/ismej.2014.210 (2015).
    Jacobsen, C. S. & Hjelmsø, M. H. Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology 27, 15–20, https://doi.org/10.1016/j.copbio.2013.09.003 (2014).
    Pierzynski, G. M., Sims, J. T. & Vance, G. F. Soils and environmental quality. In: Organical chemicals in the environment (eds G. M Pierzynski, J. T. Sims, & G. F. Vance), 273–313 (CRC Press, 2000).
    Zheng, W., Guo, M., Chow, T., Bennett, D. N. & Rajagopalan, N. Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials 181, 121–126, https://doi.org/10.1016/j.jhazmat.2010.04.103 (2010).
    Ahmad, M. et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19–33, https://doi.org/10.1016/j.chemosphere.2013.10.071 (2014).
    Lehmann, J. & Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation. (Taylor & Francis, 2015).
    Cernansky, R. Agriculture: State-of-art soil - A charcoal-rich product called biochar could boost agricultural yields and control pollution. Scientists are putting the trendy substance to the test. Nature 517, 258–260, https://doi.org/10.1038/517258a (2015).
    Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E. & Singh, B. Biochar Application to Soil: Agronomic and Environmental Benefits and Unintended Consequences. In: Advances in Agronomy (ed L. Sparks Donald) 3, 103–143 (Academic Press, 2011).
    Chaves, A., Shea, D. & Cope, W. G. Environmental fate of chlorothalonil in a Costa Rican banana plantation. Chemosphere 69, 1166–1174, https://doi.org/10.1016/j.chemosphere.2007.03.048 (2007).
    Van Scoy, A. R. & Tjeerdema, R. S. Environmental Fate and Toxicology of Chlorothalonil. In: Reviews of Environmental Contamination and Toxicology (eds. Van Scoy, A. R. & Tjeerdema, R. S), 89–105 (Springer, 2014).
    Waltz, C., Armbrust, K. & Landry, g. Chlorpyrifos and chlorothalonil in golf course leachate. 1–3 (GCSAA, 2002).
    Caux, P. Y., Kent, R. A., Fan, G. T. & Stephenson, G. L. Environmental fate and effects of chlorothalonil: a Canadian perspective. Critical Reviews in Environmental Science and Technology 26, 45–93, https://doi.org/10.1080/10643389609388486 (1996).
    Szalkowski, M. B. & Stallard, D. E. Effect of pH on the hydrolysis of chlorothalonil. Journal of Agricultural and Food Chemistry 25, 208–210, https://doi.org/10.1021/jf60209a014 (1977).
    Kwon, J. W. & Armbrust, K. L. Degradation of chlorothalonil in irradiated water/sediment systems. Journal of Agricultural And Food Chemistry 54, 3651–3657, https://doi.org/10.1021/jf052847q (2006).
    Regitano, J. B., Tornisielo, V. L., Lavorenti, A. & Pacovsky, R. S. Transformation pathways of 14C-chlorothalonil in tropical soils. Archives of environmental contamination and toxicology 40, 295–302, https://doi.org/10.1007/s002440010175 (2001).
    Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509, https://doi.org/10.1038/37348 (1997).
    Griffiths, B. S. et al. An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biology and Biochemistry 33, 1713–1722, https://doi.org/10.1016/S0038-0717(01)00094-3 (2001).
    Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences Of The United Stats Of America 109, 1159–1164, https://doi.org/10.1073/pnas.1109326109 (2012).
    Hernandez-Raquet, G., Durand, E., Braun, F., Cravo-Laureau, C. & Godon, J.-J. Impact of microbial diversity depletion on xenobiotic degradation by sewage-activated sludge. Environmental Microbiology Reports 5, 588–594, https://doi.org/10.1111/1758-2229.12053 (2013).
    Cook, K. L. et al. Effect of microbial species richness on community stability and community function in a model plant-based wastewater processing system. Microbial ecology 52, 725–737, https://doi.org/10.1007/s00248-006-9105-1 (2006).
    Franklin, R. B. & Mills, A. L. Structural and Functional Responses of a Sewage Microbial Community to Dilution-Induced Reductions in Diversity. Microbial Ecology 52, 280–288, https://doi.org/10.1007/s00248-006-9033-0 (2006).
    Quilliam, R. S., Glanville, H. C., Wade, S. C. & Jones, D. L. Life in the ‘charosphere’ – Does biochar in agricultural soil provide a significant habitat for microorganisms? Soil Biology and Biochemistry 65, 287–293, https://doi.org/10.1016/j.soilbio.2013.06.004 (2013).
    Muhammad, N. et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties. Geoderma 226–227, 270–278, https://doi.org/10.1016/j.geoderma.2014.01.023 (2014).
    Brennan, A., Moreno Jiménez, E., Alburquerque, J. A., Knapp, C. W. & Switzer, C. Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environmental Pollution 193, 79–87, https://doi.org/10.1016/j.envpol.2014.06.016 (2014).
    Dechene, A., Rosendahl, I., Laabs, V. & Amelung, W. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil. Chemosphere 109, 180–186, https://doi.org/10.1016/j.chemosphere.2014.02.010 (2014).
    Sopeña, F. & Bending, G. D. Impacts of biochar on bioavailability of the fungicide azoxystrobin: A comparison of the effect on biodegradation rate and toxicity to the fungal community. Chemosphere 91, 1525–1533, https://doi.org/10.1016/j.chemosphere.2012.12.031 (2013).
    Demisie, W. & Zhang, M. Effect of biochar application on microbial biomass and enzymatic activities in degraded red soil. African Journal of Agricultural Research 10, 755–766, https://doi.org/10.5897/AJAR2013.8209 (2015).
    Howell, C. C., Hilton, S., Semple, K. T. & Bending, G. D. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application. Chemosphere 112, 194–202, https://doi.org/10.1016/j.chemosphere.2014.03.031 (2014).
    Ortiz-Hernández, M. L., Sánchez-Salinas, E., Dantán-González, E. & Castrejón-Godínez, M. L. Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Biodegradation – Life of Science (eds R. Chamy & F. Rosenkranz) 251–287 (Intech, 2013).
    Cao, X., Ma, L., Gao, B. & Harris, W. Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine. Environmental Science & Technology 43, 3285–3291, https://doi.org/10.1021/es803092k (2009).
    Wang, H., Lin, K., Hou, Z., Richardson, B. & Gan, J. Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. Journal of Soils and Sediments 10, 283–289, https://doi.org/10.1007/s11368-009-0111-z (2010).
    Martin, S. M., Kookana, R. S., Van Zwieten, L. & Krull, E. Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. Journal of Hazardous Materials 231–232, 70–78, https://doi.org/10.1016/j.jhazmat.2012.06.040 (2012).
    Bending, G. D., Rodríguez-Cruz, M. S. & Lincoln, S. D. Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 69, 82–88, https://doi.org/10.1016/j.chemosphere.2007.04.042 (2007).
    Katayama, A., Isemura, H. & Kuwatsuka, S. Population change and characteristics of chlorothalonil-degrading bacteria in soil. Journal of Pesticide Science 16, 239–245 (1991).
    Gamble, D. S., Bruccoleri, A. G., Lindsay, E., Langford, C. H. & Leys, G. A. Chlorothalonil in a quartz sand soil: speciation and kinetics. Environmental science & technology 34, 120–124, https://doi.org/10.1021/es990273y (2000).
    Patakioutas, G. & Albanis, T. A. Adsorption–desorption studies of alachlor, metolachlor, EPTC, chlorothalonil and pirimiphos‐methyl in contrasting soils. Pest management science 58, 352–362, https://doi.org/10.1002/ps.464 (2002).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020