Exportar registro bibliográfico


Metrics:

Nonlinear optical spectrum of diamond at femtosecond regime (2017)

  • Authors:
  • USP affiliated authors: MUNIZ, SÉRGIO RICARDO - IFSC ; BONI, LEONARDO DE - IFSC ; MENDONÇA, CLEBER RENATO - IFSC
  • Unidade: IFSC
  • DOI: 10.1038/s41598-017-14748-4
  • Subjects: FOTÔNICA; ÓPTICA; LASER; ABSORÇÃO DA LUZ
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-017-14748-4 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALMEIDA, Juliana M. P.; ONCEBAY, Charlie; SIQUEIRA, Jonathas P.; et al. Nonlinear optical spectrum of diamond at femtosecond regime. Scientific Reports, London, Nature, v. 7, p. 14320-1-14320-7, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-14748-4 > DOI: 10.1038/s41598-017-14748-4.
    • APA

      Almeida, J. M. P., Oncebay, C., Siqueira, J. P., Muniz, S. R., De Boni, L., & Mendonça, C. R. (2017). Nonlinear optical spectrum of diamond at femtosecond regime. Scientific Reports, 7, 14320-1-14320-7. doi:10.1038/s41598-017-14748-4
    • NLM

      Almeida JMP, Oncebay C, Siqueira JP, Muniz SR, De Boni L, Mendonça CR. Nonlinear optical spectrum of diamond at femtosecond regime [Internet]. Scientific Reports. 2017 ; 7 14320-1-14320-7.Available from: http://dx.doi.org/10.1038/s41598-017-14748-4
    • Vancouver

      Almeida JMP, Oncebay C, Siqueira JP, Muniz SR, De Boni L, Mendonça CR. Nonlinear optical spectrum of diamond at femtosecond regime [Internet]. Scientific Reports. 2017 ; 7 14320-1-14320-7.Available from: http://dx.doi.org/10.1038/s41598-017-14748-4

    Referências citadas na obra
    Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nature Photonics 5, 397–405, https://doi.org/10.1038/nphoton.2011.54 (2011).
    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850, https://doi.org/10.1126/science.aah6875 (2016).
    Abe, N., Mitsumori, Y., Sadgrove, M. & Edamatsu, K. Dynamically unpolarized single-photon source in diamond with intrinsic randomness. Scientific Reports 7, https://doi.org/10.1038/srep46722 (2017).
    Palyanov, Y. N., Kupriyanov, I. N., Borzdov, Y. M. & Surovtsev, N. V. Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond. Scientific Reports 5, https://doi.org/10.1038/srep14789 (2015).
    Granados, E., Spence, D. J. & Mildren, R. P. Deep ultraviolet diamond Raman laser. Optics Express 19, 10857–10863, https://doi.org/10.1364/oe.19.010857 (2011).
    Murtagh, M., Lin, J., Mildren, R. P., McConnell, G. & Spence, D. J. Efficient diamond Raman laser generating 65 fs pulses. Optics Express 23, 15504–15513, https://doi.org/10.1364/oe.23.015504 (2015).
    Chen, Y. C. et al. Laser writing of coherent colour centres in diamond. Nature Photonics 11, 77–80, https://doi.org/10.1038/nphoton.2016.234 (2017).
    Sotillo, B. et al. Diamond photonics platform enabled by femtosecond laser writing. Scientific Reports 6, https://doi.org/10.1038/srep35566 (2016).
    Hausmann, B. J. M., Bulu, I., Venkataraman, V., Deotare, P. & Loncar, M. Diamond nonlinear photonics. Nature Photonics 8, 369–374, https://doi.org/10.1038/nphoton.2014.72 (2014).
    Sheikbahae, M. et al. In 26th Annual Boulder Damage Symposium on Laser-Induced Damage in Optical Materials - 1994. 605–609 (1995).
    Kozak, M., Trojanek, F., Dzurnak, B. & Maly, P. Two- and three-photon absorption in chemical vapor deposition diamond. Journal of the Optical Society of America B-Optical Physics 29, 1141–1145 (2012).
    Zhao, J. et al. Measurement of third-order nonlinear optical susceptibility of synthetic diamonds. Chinese Optics Letters 8, 685–688, https://doi.org/10.3788/col20100807.0685 (2010).
    Levenson, M. D., Bloembergen, N. & Flytzanis, C. Interference of resonant and nonresonant 3-wave mixing in diamond. Physical Review B-Solid State 6, 3962–+, https://doi.org/10.1103/PhysRevB.6.3962 (1972).
    Levenson, M. D. & Bloembergen, N. Dispersion of nonlinear optical susceptibility tensor in centrosymmetric media. Physical Review B 10, 4447–4463, https://doi.org/10.1103/PhysRevB.10.4447 (1974).
    Garcia, H. & Kalyanaraman, R. Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors. Journal of Physics B-Atomic Molecular and Optical Physics 39, 2737–2746, https://doi.org/10.1088/0953-4075/39/12/009 (2006).
    Sheikbahae, M., Said, A. A., Wei, T. H., Hagan, D. J. & van Stryland, E. W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. Ieee Journal of Quantum Electronics 26, 760–769, https://doi.org/10.1109/3.53394 (1990).
    Sheikbahae, M., Hagan, D. J. & Vanstryland, E. W. Dispersion and band-gap scaling of electronic Kerr effect in solids associated with 2-photon absorption. Physical Review Letters 65, 96–99, https://doi.org/10.1103/PhysRevLett.65.96 (1990).
    Sheikbahae, M., Hutchings, D. C., Hagan, D. J. & Vanstryland, E. W. Dispersion of bound electronic nonlinear refraction in solids. Ieee Journal of Quantum Electronics 27, 1296–1309, https://doi.org/10.1109/3.89946 (1991).
    Dinu, M. Dispersion of phonon-assisted nonresonant third-order nonlinearities. Ieee Journal of Quantum Electronics 39, 1498–1503, https://doi.org/10.1109/jqe.2003.818277 (2003).
    Cheng, J. L., Rioux, J. & Sipe, J. E. Full band structure calculation of two-photon indirect absorption in bulk silicon. Applied Physics Letters 98, https://doi.org/10.1063/1.3570654 (2011).
    Hon, N. K., Soref, R. & Jalali, B. The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared. Journal of Applied Physics 110, https://doi.org/10.1063/1.3592270 (2011).
    Mildren, R. P. In Optical Engineering of Diamond (eds R. P. Mildren & J. R. Rabeau) (Wiley-VCH Verlag GmbH & Co. KGaA, 2013).
    Roth, T. & Laenen, R. Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy. Optics Communications 189, 289–296, https://doi.org/10.1016/s0030-4018(01)01037-9 (2001).
    Gagarskii, S. V. & Prikhod’ko, K. V. Measuring the parameters of femtosecond pulses in a wide spectral range on the basis of the multiphoton-absorption effect in a natural diamond crystal. Journal of Optical Technology 75, 139–143, https://doi.org/10.1364/jot.75.000139 (2008).
    Milam, D. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Applied Optics 37, 546–550 (1998).
    Preuss, S. & Stuke, M. Subpicosecond ultraviolet-laser ablation of diamond - nnonlinear properties at 248 nm and time-resolved characterization of ablation dynamics. Applied Physics Letters 67, 338–340, https://doi.org/10.1063/1.115437 (1995).
    Dadap, J. I., Focht, G. B., Reitze, D. H. & Downer, M. C. 2- Photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement. Optics Letters 16, 499–501, https://doi.org/10.1364/ol.16.000499 (1991).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020