Exportar registro bibliográfico


Metrics:

A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells (2017)

  • Authors:
  • USP affiliated authors: BAPTISTA, MAURICIO DA SILVA - IQ ; ARAKI, KOITI - IQ
  • Unidade: IQ
  • DOI: 10.1007/s00216-017-0622-1
  • Subjects: FLUORESCÊNCIA; FERRO
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00216-017-0622-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DEDA, Daiana Kotra; CARDOSO, Roberta Mansini; UCHIYAMA, Mayara Klimuk; et al. A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells. Analytical and Bioanalytical Chemistry, Heidelberg, v. 409, n. 28, p. 6663-6675, 2017. Disponível em: < http://dx.doi.org/10.1007/s00216-017-0622-1 > DOI: 10.1007/s00216-017-0622-1.
    • APA

      Deda, D. K., Cardoso, R. M., Uchiyama, M. K., Pavani, C., Toma, S. H., Baptista, M. da S., & Araki, K. (2017). A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells. Analytical and Bioanalytical Chemistry, 409( 28), 6663-6675. doi:10.1007/s00216-017-0622-1
    • NLM

      Deda DK, Cardoso RM, Uchiyama MK, Pavani C, Toma SH, Baptista M da S, Araki K. A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells [Internet]. Analytical and Bioanalytical Chemistry. 2017 ; 409( 28): 6663-6675.Available from: http://dx.doi.org/10.1007/s00216-017-0622-1
    • Vancouver

      Deda DK, Cardoso RM, Uchiyama MK, Pavani C, Toma SH, Baptista M da S, Araki K. A reliable protocol for colorimetric determination of iron oxide nanoparticle uptake by cells [Internet]. Analytical and Bioanalytical Chemistry. 2017 ; 409( 28): 6663-6675.Available from: http://dx.doi.org/10.1007/s00216-017-0622-1

    Referências citadas na obra
    Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Asp Med. 2001;22:1–87.
    Fratila RM, Moros M, de la Fuente JM. Recent advances in biosensing using magnetic glyconanoparticles. Anal Bioanal Chem. 2016;408:1783–803.
    Oh JH, Park DH, Joo JH, Lee JS. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal Bioanal Chem. 2015;407:8627–45.
    Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed Nanotechnol Biol Med. 2016;12:287–307.
    Chandra S, Nigam S, Bahadur D. Combining unique properties of dendrimers and magnetic nanoparticles towards cancer theranostics. J Biomed Nanotechnol. 2014;10:32–49.
    Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496:191–218.
    Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol. 2011;253:81–93.
    Tarvirdipour S, Vasheghani-Farahani E, Soleimani M, Bardania H. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm. 2016;501:331–41.
    Dadras P, Atyabi F, Irani S, Ma’mani L, Foroumadi A, Mirzaie ZH, et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci. 2017;97:47–54.
    Silva AH, Lima E, Mansilla MV, Zysler RD, Troiani H, Pisciotti MLM, et al. Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation. Nanomed-Nanotechnol Biol Med. 2016;12:909–19.
    Uchiyama MK, Deda DK, Rodrigues SFD, Drewes CC, Bolonheis SM, Kiyohara PK, et al. In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system. Toxicol Sci. 2014;142:497–507.
    Zheng J, Nagashima K, Parmiter D, de la Cruz J, Patri AK. SEM X-ray microanalysis of nanoparticles present in tissue or cultured cell thin sections. In: McNeil SE, editor. Characterization of nanoparticles intended for drug delivery. Totowa: Humana; 2011. p. 93–9.
    Liu T, Choi H, Zhou R, Chen IW. RES blockade: a strategy for boosting efficiency of nanoparticle drug. Nano Today. 2015;10:11–21.
    Stapf M, Pompner N, Teichgraber U, Hilger I. Heterogeneous response of different tumor cell lines to methotrexate-coupled nanoparticles in presence of hyperthermia. Int J Nanomedicine. 2016;11:485–500.
    Lewis EEL, Child HW, Hursthouse A, Stirling D, McCully M, Paterson D, et al. The influence of particle size and static magnetic fields on the uptake of magnetic nanoparticles into three dimensional cell-seeded collagen gel cultures. J Biomed Mater Res Part B. 2015;103:1294–301.
    Allard-Vannier E, Cohen-Jonathan S, Gautier J, Herve-Aubert K, Munnier E, Souce M, et al. Pegylated magnetic nanocarriers for doxorubicin delivery: a quantitative determination of stealthiness in vitro and in vivo. Eur J Pharm Biopharm. 2012;81:498–505.
    Brisset JC, Sigovan M, Chauveau F, Riou A, Devillard E, Desestret V, et al. Quantification of iron-labeled cells with positive contrast in mouse brains. Mol Imaging Biol. 2011;13:672–8.
    Girard OM, Ramirez R, McCarty S, Mattrey RF. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI. Contrast Media Mol Imaging. 2012;7:411–7.
    Löwa N, Wiekhorst F, Metzkow S, Ludwig A, Trahms L. Magnetic particle spectroscopy for the quantification of magnetic nanoparticles in living cells. Biomed Eng/Biomedizinische Technik. 2013.
    Friedrich RP, Janko C, Poettler M, Tripal P, Zaloga J, Cicha I, et al. Flow cytometry for intracellular SPION quantification: specificity and sensitivity in comparison with spectroscopic methods. Int J Nanomedicine. 2015;10:4185–201.
    Matuszak J, Dorfler P, Zaloga J, Unterweger H, Lyer S, Dietel B, et al. Shell matters: magnetic targeting of SPIONs and in vitro effects on endothelial and monocytic cell function. Clin Hemorheol Microcirc. 2015;61:259–75.
    Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S, et al. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. J Nanobiotechnol. 2016;14:37.
    Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R. Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem. 2004;331:370–5.
    Harvey AE, Smart JA, Amis ES. Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline. Anal Chem. 1955;27:26–9.
    Peng B, Shen Y, Gao Z, Zhou M, Ma Y, Zhao S. Determination of total iron in water and foods by dispersive liquid–liquid microextraction coupled with microvolume UV–vis spectrophotometry. Food Chem. 2015;176:288–93.
    You GR, Park GJ, Lee SA, Ryu KY, Kim C. Chelate-type Schiff base acting as a colorimetric sensor for iron in aqueous solution. Sensors Actuators B Chem. 2015;215:188–95.
    Sakamoto MS, Izawa KH, Osaka MH, Sugawara M. Visual assay of total iron in human serum with bathophenanthroline. Anal Sci. 2016;32:241–4.
    Stookey LL. Ferrozine—a new spectrophotometric reagent for iron. Anal Chem. 1970;42:779.
    Rad AM, Janic B, Iskander A, Soltanian-Zadeh H, Arbab AS. Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods. BioTechniques. 2007;43:627.
    Wang ZG, Cuschieri A. Tumour cell labelling by magnetic nanoparticles with determination of intracellular iron content and spatial distribution of the intracellular iron. Int J Mol Sci. 2013;14:9111–25.
    Al Faraj A. Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection. J Nanopart Res. 2013;15:1797.
    Liu YX, Chen ZP, Wang JK. Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines. J Nanopart Res. 2011;13:199–212.
    Liu YX, Wang JK. Comparative and quantitative investigation of cell labeling of a 12-nm DMSA-coated Fe3O4 magnetic nanoparticle with multiple mammalian cell lines. J Mater Res. 2011;26:822–31.
    Scharfenberg D, Luthringer B, Lamszus K, Willumeit-Romer R. Glioblastoma cell type-specific loading with iron oxide magnetic nanoparticles. BioNanoScience. 2016;6:297–307.
    Calero M, Chiappi M, Lazaro-Carrillo A, Rodriguez MJ, Chichon FJ, Crosbie-Staunton K, et al. Characterization of interaction of magnetic nanoparticles with breast cancer cells. J Nanobiotechnol. 2015;13:16.
    Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB. In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci. 2015;16:24417–50.
    Toma SH, Santos JJ, Araki K, Toma HE. Pushing the surface-enhanced Raman scattering analyses sensitivity by magnetic concentration: a simple non core-shell approach. Anal Chim Acta. 2015;855:70–5.
    Uchiyama MK, Toma SH, Rodrigues SFD, Shimada ALB, Loiola RA, Rodriguez HJC, et al. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool. Int J Nanomedicine. 2015;10:4731–46.
    Zuin A, Cousseau T, Sinatora A, Toma SH, Araki K, Toma HE. Lipophilic magnetite nanoparticles coated with stearic acid: a potential agent for friction and wear reduction. Tribol Int. 2017;112:10–9.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.
    Zhao XL, Zhao HL, Chen ZY, Lan MB. Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol. 2014;14:210–20.
    Zhang L, Dong WF, Sun HB. Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nano. 2013;5:7664–84.
    Hoshyar N, Gray S, Han HB, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92.
    Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:5.
    Flores SE, Day AS, Keenan JI. Measurement of total iron in Helicobacter pylori-infected gastric epithelial cells. Biometals. 2015;28:143–50.
    Kononets MY, Pakhomova SV, Rozanov AG, Proskurnin MA. Determination of soluble iron species in seawater using ferrozine. J Anal Chem. 2002;57:586–9.
    Zhang LL, Tong S, Zhou J, Bao G. Accurate quantification of disease markers in human serum using iron oxide nanoparticle-linked immunosorbent assay. Theranostics. 2016;6:1353–61.
    Nobrega JA, Lopes GS. Flow-injection spectrophotometric determination of ascorbic acid in pharmaceutical products with the Prussian blue reaction. Talanta. 1996;43:971–6.
    Constable EC, Ward MD, Corr S. A convenient, high-yield synthesis of 2,2′-6′,2′-terpyridine andits iron(II) complex. Inorg Chim Acta. 1988;141:201–3.
    Richardson JN, Dyer AL, Stegemiller ML, Zudans I, Seliskar CJ, Heineman WR. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 13. Detection of aqueous iron by in situ complexation with 2,2′-bipyridine. Anal Chem. 2002;74:3330–5.
    Samadi A, Amjadi M. Halloysite nanotubes as a new adsorbent for solid phase extraction and spectrophotometric determination of iron in water and food samples. J Appl Spectrosc. 2016;83:422–8.
    Malik AK, Bansal S, Aulakh JS. Fourth-derivative spectrophotometric determination of fungicide ferbam (iron(III) dimethyidithiocarbamate) in a commercial sample and wheat grains using 2,2′-bipyridyl. Anal Bioanal Chem. 2003;375:1250–3.
    Ramsay WNM. The determination of iron in blood plasma or serum. Clin Chim Acta. 1957;2:214–20.
    Galimard A, Safi M, Ould-Moussa N, Montero D, Conjeaud H, Berret JF. Thirty-femtogram detection of iron in mammalian cells. Small. 2012;8:2036–44.
    Torrisi V, Graillot A, Vitorazi L, Crouzet Q, Marletta G, Loubat C, et al. Preventing corona effects: multiphosphonic acid poly(ethylene glycol) copolymers for stable stealth iron oxide nanoparticles. Biomacromolecules. 2014;15:3171–9.
    Dadashzadeh ER, Hobson M, Bryant LH, Dean DD, Frank JA. Rapid spectrophotometric technique for quantifying iron in cells labeled with superparamagnetic iron oxide nanoparticles: potential translation to the clinic. Contrast Media Mol Imaging. 2013;8:50–6.
    Klockenkämper R, von Bohlen A. Total-reflection X-ray fluorescence analysis and related methods. 2 ed. Chemical analysis: a series of monographs on analytical chemistry and its applications. New Jersey: Wiley; 2014.
    Polgári Z, Ajtony Z, Kregsamer P, Streli C, Mihucz VG, Réti A, et al. Microanalytical method development for Fe, Cu and Zn determination in colorectal cancer cells. Talanta. 2011;85:1959–65.
    Dogan P, Dogan M, Klockenkämper R. Determination of trace elements in blood serum of patients with Behçet disease by total reflection X-ray fluorescence analysis. Clin Chem. 1993;39:1037.
    Majewska U, Lyzwa P, Lyzwa K, Banas D, Kubala-Kukus A, Wudarczyk-Mocko J, et al. Determination of element levels in human serum: total reflection X-ray fluorescence applications. Spectrochim Acta B At Spectrosc. 2016;122:56–61.
    Prange A, Boddeker H, Michaelis W. Multi-element determination of trace-elements in whole-blood and blood-serum by TXRF. Fresenius Zeitschrift Fur Analytische Chemie. 1989;335:914–8.
    Gonzalez M, Tapia L, Alvarado M, Tornero JD, Fernandez R. Intracellular determination of elements in mammalian cultured cells by total reflection X-ray fluorescence spectrometry. J Anal At Spectrom. 1999;14:885–8.
    Polgari Z, Ajtony Z, Kregsamer P, Streli C, Mihucz VG, Reti A, et al. Microanalytical method development for Fe, Cu and Zn determination in colorectal cancer cells. Talanta. 2011;85:1959–65.
    Magalhães T, von Bohlen A, Carvalho ML, Becker M. Trace elements in human cancerous and healthy tissues from the same individual: a comparative study by TXRF and EDXRF. Spectrochim Acta B At Spectrosc. 2006;61:1185–93.
    Zecca L, Shima T, Stroppolo A, Goj C, Battiston GA, Gerbasi R, et al. Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience. 1996;73:407–15.
    Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29:S49–52.
    Pieroni L, Khalil L, Charlotte F, Poynard T, Piton A, Hainque B, et al. Comparison of bathophenanthroline sulfonate and ferene as chromogens in colorimetric measurement of low hepatic iron concentration. Clin Chem. 2001;47:2059–61.
    Lunov O, Syrovets T, Buchele B, Jiang XE, Rocker C, Tron K, et al. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials. 2010;31:5063–71.
    Lunov O, Zablotskii V, Syrovets T, Rocker C, Tron K, Nienhaus GU, et al. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials. 2011;32:547–55.
    Rousseau RM. Detection limit and estimate of uncertainty of analytical XRF results. Rigaku J. 2001;18:33–47.
    Pottler M, Staicu A, Zaloga J, Unterweger H, Weigel B, Schreiber E, et al. Genotoxicity of superparamagnetic iron oxide nanoparticles in granulosa cells. Int J Mol Sci. 2015;16:26280–90.
    Ma NN, Ma C, Li CY, Wang T, Tang YJ, Wang HY, et al. Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J Nanosci Nanotechnol. 2013;13:6485–98.
    Xu L, Bai Q, Zhang X, Yang H. Folate-mediated chemotherapy and diagnostics: an updated review and outlook. J Control Release. 2017;252:73–82.
    Bhunia SK, Maity AR, Nandi S, Stepensky D, Jelinek R. Imaging cancer cells expressing the folate receptor with carbon dots produced from folic acid. Chembiochem. 2016;17:614–9.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020