Exportar registro bibliográfico


Metrics:

Endothelial cell culture under perfusion on A Polyester-toner microfluidic device (2017)

  • Authors:
  • Autor USP: CARRILHO, EMANUEL - IQSC
  • Unidade: IQSC
  • DOI: 10.1038/s41598-017-11043-0
  • Subjects: NANOTECNOLOGIA; CÉLULAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-017-11043-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      URBACZEK, Ana Carolina; GOMES CARNEIRO LEÃO, Paulo Augusto; SOUZA, Fayene Zeferino Ribeiro de; et al. Endothelial cell culture under perfusion on A Polyester-toner microfluidic device. Scientific Reports, London, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-11043-0 > DOI: 10.1038/s41598-017-11043-0.
    • APA

      Urbaczek, A. C., Gomes Carneiro Leão, P. A., Souza, F. Z. R. de, Afonso, A., Alberice, J. V., Cappelini, L. T., et al. (2017). Endothelial cell culture under perfusion on A Polyester-toner microfluidic device. Scientific Reports. doi:10.1038/s41598-017-11043-0
    • NLM

      Urbaczek AC, Gomes Carneiro Leão PA, Souza FZR de, Afonso A, Alberice JV, Cappelini LT, Carlos IZ, Carrilho E. Endothelial cell culture under perfusion on A Polyester-toner microfluidic device [Internet]. Scientific Reports. 2017 ;Available from: http://dx.doi.org/10.1038/s41598-017-11043-0
    • Vancouver

      Urbaczek AC, Gomes Carneiro Leão PA, Souza FZR de, Afonso A, Alberice JV, Cappelini LT, Carlos IZ, Carrilho E. Endothelial cell culture under perfusion on A Polyester-toner microfluidic device [Internet]. Scientific Reports. 2017 ;Available from: http://dx.doi.org/10.1038/s41598-017-11043-0

    Referências citadas na obra
    Huh, D., Torisawa, Y., Hamilton, G. A., Kim, H. J. & Ingber, D. E. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12, 2156–2164 (2012).
    Kim, D., Wu, X., Young, A. T. & Haynes, C. L. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Acc. Chem. Res. 47, 1165–1173 (2014).
    Fabre, K. M., Livingston, C. & Tagle, D. A. Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue. Exp. Biol. Med. (Maywood) 239, 1073–1077 (2014).
    Huh, D. et al. Microfabrication of human organs-on-chips. Nat. Protoc. 8, 2135–2157 (2013).
    Capulli, A. K. et al. Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 14, 3181–3186 (2014).
    Li, X., Valadez, A. V., Zuo, P. & Zhihong, N. Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis. 4, 1509–1525 (2012).
    Folch, A. & Toner, M. Microengineering of cellular interactions. Eng. Med. 2, 227–256 (2000).
    Ou, K.-L. & Hosseinkhani, H. Development of 3D in vitro technology for medical applications. Int. J. Mol. Sci. 15, 17938–17962 (2014).
    Zhang, J., Wei, X., Zeng, R., Xu, F. & Li, X. Stem cell culture and differentiation in microfluidic devices towards organ-on-a-chip. Future Sci. OA. 3, FSO187 (2017).
    El-Ali, J., Sorger, P. K. & Jensen, K. F. Cells on chips. Nature 442, 403–411 (2006).
    Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).
    Ghaemmaghami, A. M., Hancock, M. J., Harrington, H., Kaji, H. & Khademhosseini, A. Biomimetic tissues on a chip for drug discovery. Drug Discov. Today 17, 173–181 (2012).
    Van Der Meer, A. D. & Van Den Berg, A. Organs-on-chips: breaking the in vitro impasse. Integr. Biol. 4, 461–470 (2012).
    Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).
    Nakao, Y., Kimura, H., Sakai, Y. & Fujii, T. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics 5, 1–7 (2011).
    Jang, K.-J. & Suh, K.-Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10, 36–42 (2010).
    Puleo, C. M., McIntosh Ambrose, W., Takezawa, T., Elisseeff, J. & Wang, T.-H. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. Lab Chip 9, 3221–3227 (2009).
    Peyrin, J. M. et al. Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip 11, 3663–3673 (2011).
    Sung, K. E. et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr. Biol. (Camb) 3, 439–450 (2011).
    Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).
    Thompson, B. L. et al. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut andlaminate fabrication method. Nat. Protoc. 10, 875–886 (2015).
    Coltro, W. K. T., Da Silva, J. A. F. & Carrilho, E. Fabrication and integration of planar electrodes for contactless conductivity detection on polyester-toner electrophoresis microchips. Electrophoresis 29, 2260–2265 (2008).
    Duarte, G. R. M. et al. Disposable polyester-toner electrophoresis microchips for DNA analysis. Analyst (London. 1877. Print) 137, 2692–2698 (2012).
    Ouyang, Y. et al. A disposable laser print-cut-laminate polyester microchip for multiplexed PCR via infra-red-mediated thermal control. Anal. Chim. Acta 901, 59–67 (2015).
    Duarte, G. R. M. et al. Disposable polyester toner electrophoresis microchips for DNA analysis. Analyst 137, 2692–2698 (2012).
    Duarte, G. R. M., Price, C. W., Augustine, B. H., Carrilho, E. & Landers, J. P. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. Anal. Chem. 83, 5182–5189 (2011).
    de Souza, F. R., Alves, G. L. & Coltro, W. K. T. Capillary-driven toner-based microfluidic devices for clinical diagnostics with colorimetric detection. Anal. Chem. 84, 9002–9007 (2012).
    Liu, A. L., He, F. Y., Hu, Y. L. & Xia, X. H. Plastified poly(ethylene terephthalate) (PET)-toner microfluidic chip by direct-printing integrated with electrochemical detection for pharmaceutical analysis. Talanta 68, 1303–1308 (2006).
    Chen, S., Mestres, G., Lan, W., Xia, W. & Engqvist, H. Cytotoxicity of modified glass ionomer cement on odontoblast cells. J. Mater. Sci. Mater. Med. 27, 116 (2016).
    Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).
    Green, L. C. et al. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131–138 (1982).
    Alves, P. et al. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids Surfaces B. Biointerfaces 113, 25–32 (2014).
    Young, E. W. K. & Simmons, C. A. Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10, 143–160 (2010).
    Thi, M. M., Tarbell, J. M., Weinbaum, S. & Spray, D. C. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. USA 101, 16483–16488 (2004).
    Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519–560 (1995).
    Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).
    Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6, 16–26 (2009).
    Davies, P. F., Reidy, M. A., Goode, T. B. & Bowyer, D. E. Scanning electron microscopy in the evaluation of endothelial integrity of the fatty lesion in atherosclerosis. Atherosclerosis 25, 125–130 (1976).
    Goode, T. B., Davies, P. F., Reidy, M. A. & Bowyer, D. E. Aortic endothelial cell morphology observed in situ by scanning electron microscopy during atherogenesis in the rabbit. Atherosclerosis 27, 235–251 (1977).
    Flaherty, J. T. et al. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 30, 23–33 (1972).
    Kwei, S. et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am. J. Pathol. 164, 81–89 (2004).
    Melkumyants, A. M., Balashov, S. A. & Khayutin, V. M. Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc. Res. 23, 741–747 (1989).
    Langille, B. L. & O’Donnell, F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231, 405–407 (1986).
    Langille, B. L. Arterial remodeling: relation to hemodynamics. Can. J. Physiol. Pharmacol. 74, 834–841 (1996).
    Traub, O. & Berk, B. C. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 677–685 (1998).
    Tzima, E. Role of small GTPases in endothelial cytoskeletal dynamics and the shear stress response. Circ. Res. 98, 176–185 (2006).
    Song, J. W. et al. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77, 3993–3999 (2005).
    Hubbell, J. A. Biomaterials in tissue engineering. Biotechnology (N Y) 13, 565–576 (1995).
    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).
    Dewez, J. L. et al. Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials 19, 1441–1445 (1998).
    Reinhart-King, C. A., Dembo, M. & Hammer, D. A. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89, 676–689 (2005).
    Santos, A. R. Jr. et al. Vero cell growth and differentiation on poly(L-lactic acid) membranes of different pore diameters. Artif. Organs 25, 7–13 (2001).
    de Mel, A., Jell, G., Stevens, M. M. & Seifalian, A. M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules 9, 2969–2979 (2008).
    Yang, J., Bei, J. & Wang, S. Enhanced cell affinity of poly (D,L-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23, 2607–2614 (2002).
    Chu, P., Chen, J., Wang, L. & Huang, N. Plasma-surface Modification of Biomaterials Mater. Sci. Eng. R Reports 36, 143–206 (2002).
    Woodcock, S. E., Johnson, W. C. & Chen, Z. Collagen adsorption and structure on polymer surfaces observed by atomic force microscopy. J. Colloid Interface Sci. 292, 99–107 (2005).
    Shin, H. Fabrication methods of an engineered microenvironment for analysis of cell-biomaterial interactions. Biomaterials 28, 126–133 (2007).
    Jiao, Y. P. & Cui, F. Z. Surface modification of polyester biomaterials for tissue engineering. Biomed. Mater. 2, R24–R37 (2007).
    Storm, T. et al. Enhanced endothelialization of PCL through chemical activation, protein precoating and VEGF stimulation. Biomed. Tech. (Berl) (2013).
    Pompe, T. et al. Surface modification of poly(hydroxybutyrate) films to control cell-matrix adhesion. Biomaterials 28, 28–37 (2007).
    Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Mater. Biol. 310, 1139–1143 (2005).
    Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).
    Groves, J. T. Learning the chemical language of cell-surface interactions. Sci. STKE 2005, pe45 (2005).
    Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).
    Kleinman, H. K., Philp, D. & Hoffman, M. P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 14, 526–532 (2003).
    Rosso, F., Giordano, A., Barbarisi, M. & Barbarisi, A. From cell-ECM interactions to tissue engineering. J. Cell. Physiol. 199, 174–180 (2004).
    Docheva, D., Popov, C., Mutschler, W. & Schieker, M. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J. Cell. Mol. Med. 11, 21–38 (2007).
    Martino, M. M. et al. Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterial 30, 1089–1097 (2009).
    Banères, J. L., Roquet, F., Martin, A. & Parello, J. A minimized human integrin alpha(5)beta(1) that retains ligand recognition. J. Biol. Chem. 275, 5888–5903 (2000).
    Leitinger, B., McDowall, A., Stanley, P. & Hogg, N. The regulation of integrin function by Ca(2+). Biochim. Biophys. Acta 1498, 91–98 (2000).
    Shimaya, M., Muneta, T., Ichinose, S., Tsuji, K. & Sekiya, I. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins. Osteoarthr. Cartil. 18, 1300–1309 (2010).
    Byzova, T. V. et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol. Cell. 6, 851–860 (2000).
    Ferrara, N., Gerber, H.-P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020