Exportar registro bibliográfico


Metrics:

Coincidence and self-coincidence of maps between spheres (2017)

  • Authors:
  • USP affiliated authors: GONCALVES, DACIBERG LIMA - IME
  • Unidades: IME
  • DOI: 10.1007/s11784-016-0376-y
  • Subjects: TOPOLOGIA ALGÉBRICA
  • Keywords: Coincidence, small deformation; homotopy groups of spheres; Kervaire invariant one
  • Language: Inglês
  • Imprenta:
    • Place of publication: Basel
    • Date published: 2017
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1007/s11784-016-0376-y (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GONÇALVES, Daciberg Lima; RANDALL, Duane. Coincidence and self-coincidence of maps between spheres. Journal of Fixed Point Theory and Applications, Basel, v. 19, n. 2, p. 1011-1040, 2017. Disponível em: < http://dx.doi.org/10.1007/s11784-016-0376-y > DOI: 10.1007/s11784-016-0376-y.
    • APA

      Gonçalves, D. L., & Randall, D. (2017). Coincidence and self-coincidence of maps between spheres. Journal of Fixed Point Theory and Applications, 19( 2), 1011-1040. doi:10.1007/s11784-016-0376-y
    • NLM

      Gonçalves DL, Randall D. Coincidence and self-coincidence of maps between spheres [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1011-1040.Available from: http://dx.doi.org/10.1007/s11784-016-0376-y
    • Vancouver

      Gonçalves DL, Randall D. Coincidence and self-coincidence of maps between spheres [Internet]. Journal of Fixed Point Theory and Applications. 2017 ; 19( 2): 1011-1040.Available from: http://dx.doi.org/10.1007/s11784-016-0376-y

    Referências citadas na obra
    Barratt, M., Jones, J., Mahowald, M.: The Kervaire invariant problem. Contemp. Math. 19, 9–22 (1983)
    M. Barratt, J. Jones and M. Mahowald, Relations among Toda brackets and the Kervaire invariant in dimension 62. J. Lond. Math. Soc. (2) 30 (1984), 533–550.
    M. Barratt, J. Jones and M. Mahowald, The Kervaire Invariant and the Hopf Invariant. Lecture Notes in Math. 1286, Springer-Verlag, 1987, 135–173.
    Borsari, L.D., Goncalves, D.L.: A Van Kampen type theorem for coincidences. Topology Appl. 101, 149–160 (2000)
    F. R. Cohen, A course in some aspects of classical homotopy theory. In: Algebraic Topology (Seattle, Wash., 1985), Lecture Notes in Math. 1286, Springer-Verlag, Berlin, 1987, 1–92.
    Dimovski, D., Geoghegan, R.: One-parameter fixed point theory. Forum Math. 2, 125–154 (1990)
    Dold, A., Goncalves, D.L.: Self-coincidence of fibre maps. Osaka J. Math. 42, 291–307 (2005)
    Golasiński, M., Mukai, J.: Gottlieb groups of spheres. Topology 47, 399–430 (2008)
    D. L. Gonçalves, Coincidence theory. In: Handbook of Topological Fixed Point Theory (R. F. Brown, ed.), Springer-Verlag, Dordrecht, 2005, 3–42.
    D. L. Gonçalves, Coincidence Reidemeister classes on nilmanifolds and nilpotent fibrations. Topology Appl. 83 (1998), 169–186.
    D. L. Gonçalves, The coincidence Reidemeister classes of maps on nilmanifolds. Topol. Methods Nonlinear Anal. 12 (1998), 375–386.
    D. L. Gonçalves, Coincidence theory for maps from a complex to a manifold. Topology Appl. 92 (1999), 63–77.
    D. Gonçalves and J. Jezierski, The Lefschetz coincidence formula on nonorientable manifolds. Fund. Math. 153 (1997), 1–23.
    D. Gonçalves and D. Randall, Coincidence of maps from $$S^{2n-1}$$ S 2 n - 1 -bundles over $$S^{2n}$$ S 2 n to $$S^{2n}$$ S 2 n . Bol. Soc. Mat. Mex. (3) 10 (2004), 181–192.
    D. Gonçalves and D. Randall, Self-coincidence of mappings between spheres and the strong Kervaire invariant one problem. C. R. Acad. Sci. Paris Ser. I 342 (2006), 511–513.
    D. Gonçalves and P. Wong, Nilmanifolds are Jiang-type spaces for coincidences. Forum Math. 13 (2001), 133–141.
    Hatcher, A., Quinn, F.: Bordism invariants of intersections of submanifolds. Trans. Amer. Math. Soc. 200, 327–344 (1974)
    M. A. Hill, M. J. Hopkins and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one. Ann. of Math. (2) 184 (2016), 1–262.
    Hilton, P.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1953)
    James, I.M.: Products on spheres. Mathematika 6, 1–13 (1956)
    Jezierski, J.: One codimensional Wecken type theorems. Forum Math. 5, 421–439 (1993)
    Kervaire, M.: Some nonstable homotopy groups of Lie groups. Illinois J. Math. 4, 161–169 (1960)
    S. O. Kochman and M. E. Mahowald, On the computation of the stable stems. In: The Čech Centennial: A Conference on Homotopy Theory, Contemp. Math. 181, Amer. Math. Soc., Providence, 1995, 299–316.
    Koschorke, U.: Selfcoincidences in higher codimensions. J. Reine Angew. Math. 576, 1–10 (2004)
    Koschorke, U.: Nielsen coincidence theory in arbitrary codimensions. J. Reine Angew. Math. 598, 211–236 (2006)
    Koschorke, U.: Nonstabilized Nielsen coincidence invariants and Hopf-Ganea homomorphisms. Geom. Topol. 10, 619–665 (2006)
    U. Koschorke,Geometric and homotopy theoretic methods in Nielsen coincidence theory. Fixed Point Theory Appl. (2006), Article ID 84093, 15 pages.
    Koschorke, U.: Selfcoincidences and roots in Nielsen theory. J. Fixed Point Theory Appl. 2, 241–259 (2007)
    U. Koschorke, Minimizing coincidence numbers of maps into projective spaces. In: The Zieschang Gedenkschrift, Geom. Topol. Monogr. 14, Geom. Topol. Publ., Coventry, 2008, 373–391.
    Koschorke, U., Randall, D.: Kervaire invariants and selfcoincidences. Geom. Topol. 17, 621–638 (2013)
    Lam, K.Y., Randall, D.: Block bundle obstruction to Kervaire invariant one. Contemp. Math. 407, 163–171 (2006)
    Morisugi, K., Mukai, J.: Lifting to mod 2 Moore spaces. J. Math. Soc. Japan 52, 515–533 (2000)
    J. Mukai, Private communication, 2015.
    Y. Nomura, Some homotopy groups of real Stiefel manifolds in the metastable range. III. Sci. Rep. College Gen. Ed. Osaka Univ. 28 (1979), 1–26.
    Y. Nomura, Some homotopy groups of real Stiefel manifolds in the metastable range. V. Sci. Rep. College Gen. Ed. Osaka Univ. 29 (1981), 159–183.
    Oda, N.: Unstable homotopy groups of spheres. Bull. Inst. Adv. Res. Fukuoka Univ. 44, 49–152 (1979)
    D. Randall, Embedding Homotopy Spheres and the Kervaire Invariant. Contemp. Math. 239, Amer. Math. Soc., Providence, RI, 1999, 239–243.
    J. P. Serre, Groupes d’homotopie et classes des groupes abélians. Ann. of Math. (2) 58 (1953), 258–294.
    Thomeier, S.: Einige Ergebnisse: über Homotopiegruppen von Sphären. Math. Ann. 164, 225–250 (1966)
    H. Toda, Composition Methods in Homotopy Groups of Spheres. Ann. of Math. Stud. 49, Princeton University Press, Princeton, NJ, 1962.
    G. Whitehead, Elements of Homotopy Theory. Grad. Texts in Math., Springer-Verlag, New York, 1978.
    Wong, P.: Reidemeister number, Hirsch rank, coincidences on polycyclic groups and solvmanifolds. J. Reine Angew. Math. 524, 185–204 (2000)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020