Exportar registro bibliográfico


Metrics:

Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles (2017)

  • Authors:
  • Autor USP: STEFANI, HELIO ALEXANDRE - FCF
  • Unidade: FCF
  • DOI: 10.1007/s11030-017-9764-5
  • Subjects: ALFA-AMINOÁCIDOS; SÍNTESE ORGÂNICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11030-017-9764-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      VASCONCELOS, Stanley N. S; FORNARI, Evelin; CARACELLI, Ignez; STEFANI, Hélio Alexandre. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles. Molecular Diversity, Dordrecht, v. 21, n. 4, p. 893-902, 2017. Disponível em: < http://dx.doi.org/10.1007/s11030-017-9764-5 > DOI: 10.1007/s11030-017-9764-5.
    • APA

      Vasconcelos, S. N. S., Fornari, E., Caracelli, I., & Stefani, H. A. (2017). Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles. Molecular Diversity, 21( 4), 893-902. doi:10.1007/s11030-017-9764-5
    • NLM

      Vasconcelos SNS, Fornari E, Caracelli I, Stefani HA. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles [Internet]. Molecular Diversity. 2017 ; 21( 4): 893-902.Available from: http://dx.doi.org/10.1007/s11030-017-9764-5
    • Vancouver

      Vasconcelos SNS, Fornari E, Caracelli I, Stefani HA. Synthesis of α-amino-1,3-dicarbonyl compounds via Ugi flow chemistry reaction: access to functionalized 1,2,3-triazoles [Internet]. Molecular Diversity. 2017 ; 21( 4): 893-902.Available from: http://dx.doi.org/10.1007/s11030-017-9764-5

    Referências citadas na obra
    Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12:5182–5185. doi: 10.1021/ol102216x
    Kappe CO, Van der Eycken E (2010) Click chemistry under non-classical reaction conditions. Chem Soc Rev 39:1280–1290. doi: 10.1039/B901973C
    Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728. doi: 10.1002/anie.201409318
    Razzaq T, Kappe CO (2010) Continuous flow organic synthesis under high-temperature/pressure conditions. Chem Asian J 5:1274–1289. doi: 10.1002/asia.201000010
    Pagano N, Herath A, Cosford NDP (2011) An automated process for a sequential heterocycle/multicomponent reaction: multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2( $$1h$$ 1 h )-ones. J Flow Chem 1:28–31. doi: 10.1556/jfchem.2011.00001
    Sugiono E, Rueping M (2013) A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines. Beilstein J Org Chem 9:2457–2462. doi: 10.3762/bjoc.9.284
    Dalla-Vechia L, Reichart B, Glasnov T, Miranda LSM, Kappe CO, de Souza ROMA (2011) A three step continuous flow synthesis of the biaryl unit of the HIV protease inhibitor Atazanavir. Org Biomol Chem 11:6806–6813. doi: 10.1039/C3OB41464G
    Noël T, Musacchio AJ (2011) Suzuki–Miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow. Org Lett 13:5180–5183. doi: 10.1021/ol202052q
    Kleinke AS, Jamison TF (2013) Hydrogen-free alkene reduction in continuous flow. Org Lett 15:710–713. doi: 10.1021/ol400051n
    Ambreen N, Kumar R, Wirth T (2013) Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation. Beilstein J Org Chem 9:1437–1442. doi: 10.3762/bjoc.9.162
    Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12:5182–5185. doi: 10.1021/ol102216x
    Varas AC, Noël T, Wang Q, Hessel V (2012) Copper(I)-catalyzed azide-alkyne cycloadditions in microflow: catalyst activity, high-t operation, and an integrated continuous copper scavenging unit. ChemSus Chem 5:1703–1707. doi: 10.1002/cssc.201200323
    Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2013) One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J Org Chem 9:1957–1968. doi: 10.3762/bjoc.9.232
    Salvador CEM, Pieber B, Neu PM, Torvisco A, Andrade CKZ, Kappe CO (2015) A sequential ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids. J Org Chem 80:4590–4602. doi: 10.1021/acs.joc.5b00445
    Fanelli F, Parisi G, Degennaro L, Luisi R (2017) Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J Org Chem 13:520–542. doi: 10.3762/bjoc.13.51
    Ugi I (1962) The $$\alpha $$ α -addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed 1:8–20. doi: 10.1002/anie.19620008
    Brauch S, van Berkel SS, Westermann B (2013) Higher-order multicomponent reactions: beyond four reactants. Chem Soc Rev 42:4948–4962. doi: 10.1039/c3cs35505e
    Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975. doi: 10.1039/c4gc00013g
    Liddle J, Allen MJ, Borthwick AD, Brooks DP, Davies DE, Edwards RM, Exall AM, Hamlett C, Irving WR, Mason AM, McCafferty GP, Nerozzi F, Peace S, Philp J, Pollard D, Pullen MA, Shabbir SS, Sollis SL, Westfall TD, Woollard PM, Wuc C, Hickeya DMB (2008) The discovery of GSK221149A: a potent and selective oxytocin antagonist. Bioorg Med Chem Lett 18:90–94. doi: 10.1016/j.bmcl.2007.11.008
    Sollis SL (2005) Short and novel stereospecific synthesis of trisubstituted 2,5-diketopiperazines. J Org Chem 70:4735–4740. doi: 10.1021/jo0501137
    Rossen K, Pye PJ, DiMichelc LM, Volante RP, Reider PJ (1998) An efficient asymmetric hydrogenation approach to the synthesis of the crixivan®. Piperazine Intermediate Tetrahedron Lett 39:6823–6826. doi: 10.1016/S0040-4039(98)01484-1
    Corey EJ, Gin DY, Kania RS (1996) Enantioselective total synthesis of ecteinascidin 743. J Am Chem Soc 118:9202–9203. doi: 10.1021/ja962480t
    Ashley ER, Cruz EG, Stoltz BM (2003) The total synthesis of ( $$-$$ - )-lemonomycin. J Am Chem Soc 125:15000–15001. doi: 10.1021/ja039223q
    Yoshida A, Akaiwa M, Asakawa T, Hamashima Y, Yokoshima S, Fukuyama T, Kan T (2012) Total synthesis of (-)-lemonomycin. Chem Eur J 18:11192–11195. doi: 10.1002/chem.201202073
    Martinez-Ariza G, Ayaz M, Roberts SA, Rabanal-Leýn WA, Arratia-Pérez R, Hulme C (2015) The synthesis of stable, complex organocesium tetramic acids through the ugi reaction and cesium-carbonate-promoted cascades. Angew Chem Int Ed 54:11672–11676. doi: 10.1002/anie.201504377
    Barreto AFS, Vercillo OE, Birkett MA, Caulfield JC, Wessjohann LA, Andrade CKZ (2011) Fast and efficient microwave-assisted synthesis of functionalized peptoids via Ugi reactions. Org Biomol Chem 9:5024–5027. doi: 10.1039/c1ob05471f

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020