Exportar registro bibliográfico

Transformada Wavelet e técnicas de inteligência computacional aplicadas à identificação, compressão e armazenamento de sinais no contexto de qualidade da energia elétrica (2017)

  • Authors:
  • Autor USP: ANDRADE, LUCIANO CARLI MOREIRA DE - EESC
  • Unidade: EESC
  • Sigla do Departamento: SEL
  • Subjects: SISTEMAS ELÉTRICOS DE POTÊNCIA; ANÁLISE DE ONDALETAS; ENERGIA ELÉTRICA
  • Keywords: Compressão e armazenamento de dados; Data compression and storage; Detecção e classificação de distúrbios; Detection and classification of disturbances; Electric power system; Intelligent systems; Power quality; Sistemas inteligentes; Wavelets transform
  • Language: Português
  • Abstract: extração de características e classificação de distúrbios de QEE. Esse algoritmo foi desenvolvido com base nos recursos dos Algoritmos Evolutivos (AEs) e adotou RNAs do tipo Perceptron Multicamadas, pois, esta arquitetura pode ser considerada consagrada no que se refere à classificação de padrões. Por fim, a terceira contribuição é relativa ao desenvolvimento de um procedimentos baseados em AEs, a fim de se aprimorar métodos de compressão de dados que preservem as informações relevantes nos sinais de QEE. Assim, é importante mencionar que os resultados dessa pesquisa poderão determinar mecanismos automáticos a serem utilizados no processo de registro, tratamento e armazenamento de informações que serão importantes para se manter um banco de dados (histórico) atualizado nas concessionárias de energia, a partir do qual, índices e um melhor mapeamento e entendimento de todos os distúrbios relacionados à QEE poderão ser melhor entendidos e solucionadosA presença de distúrbios na energia elétrica fornecida aos consumidores pode causar a diminuição no tempo de vida útil dos equipamentos, mal funcionamento ou até mesmo sua perda. Desse modo, ferramentas capazes de realizar a detecção, localização, classificação, compressão e o armazenamento de sinais de forma automática e organizada são essenciais para garantir um processo de monitoramento adequado ao sistema elétrico de potência como um todo. Dentre as ferramentas comumente aplicadas às tarefas supramencionadas, pode-se destacar a Transformada Wavelet (TW) e as Redes Neurais Artificiais (RNAs). Contudo, ainda não foi estabelecida uma metodologia para obtenção e validação da TW e seu nível de decomposição, bem como da arquitetura e da topologia de RNAs mais apropriadas às tarefas supracitadas. O principal fato que levou a esta constatação deve-se à análise da literatura correlata, onde é possível notar o uso de distintas TW e RNAs. Neste contexto, a primeira contribuição desta pesquisa foi o projeto e desenvolvimento de um método eficiente de segmentação de sinais com distúrbios associados à Qualidade da Energia Elétrica (QEE). O método desenvolvido se beneficia das propriedades da TW de identificação temporal de descontinuidades em sinais. A segunda contribuição é o desenvolvimento de um algoritmo automático que, por meio do método de segmentação desenvolvido e de classificação por RNAs, indique as melhores ferramentas (Wavelets e RNAs) para as tarefas de segmentação,
  • Imprenta:
  • Data da defesa: 06.07.2017
  • Acesso à fonte
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ANDRADE, Luciano Carli Moreira de; FERNANDES, Ricardo Augusto Souza; OLESKOVICZ, Mário. Transformada Wavelet e técnicas de inteligência computacional aplicadas à identificação, compressão e armazenamento de sinais no contexto de qualidade da energia elétrica. 2017.Universidade de São Paulo, São Carlos, 2017. Disponível em: < http://www.teses.usp.br/teses/disponiveis/18/18154/tde-09082017-081609/ >.
    • APA

      Andrade, L. C. M. de, Fernandes, R. A. S., & Oleskovicz, M. (2017). Transformada Wavelet e técnicas de inteligência computacional aplicadas à identificação, compressão e armazenamento de sinais no contexto de qualidade da energia elétrica. Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/18/18154/tde-09082017-081609/
    • NLM

      Andrade LCM de, Fernandes RAS, Oleskovicz M. Transformada Wavelet e técnicas de inteligência computacional aplicadas à identificação, compressão e armazenamento de sinais no contexto de qualidade da energia elétrica [Internet]. 2017 ;Available from: http://www.teses.usp.br/teses/disponiveis/18/18154/tde-09082017-081609/
    • Vancouver

      Andrade LCM de, Fernandes RAS, Oleskovicz M. Transformada Wavelet e técnicas de inteligência computacional aplicadas à identificação, compressão e armazenamento de sinais no contexto de qualidade da energia elétrica [Internet]. 2017 ;Available from: http://www.teses.usp.br/teses/disponiveis/18/18154/tde-09082017-081609/


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021