Exportar registro bibliográfico


Metrics:

Using a system of differential equations that models cattle growth to uncover the genetic basis of complex traits (2017)

  • Authors:
  • Autor USP: FERRAZ, JOSÉ BENTO STERMAN - FZEA
  • Unidade: FZEA
  • DOI: 10.1007/s13353-017-0395-4
  • Subjects: BOVINOS DE CORTE; GADO NELORE; MELHORAMENTO GENÉTICO ANIMAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s13353-017-0395-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FREUA, Mateus Castelani; SANTANA, Miguel Henrique de Almeida; VENTURA, Ricardo Vieira; TEDESCHI, Luis Orlindo; FERRAZ, José Bento Sterman. Using a system of differential equations that models cattle growth to uncover the genetic basis of complex traits. Journal of Applied Genetics, Heidelberg, v. 58, n. 3, p. 393-400, 2017. Disponível em: < https://doi.org/10.1007/s13353-017-0395-4 > DOI: 10.1007/s13353-017-0395-4.
    • APA

      Freua, M. C., Santana, M. H. de A., Ventura, R. V., Tedeschi, L. O., & Ferraz, J. B. S. (2017). Using a system of differential equations that models cattle growth to uncover the genetic basis of complex traits. Journal of Applied Genetics, 58( 3), 393-400. doi:10.1007/s13353-017-0395-4
    • NLM

      Freua MC, Santana MH de A, Ventura RV, Tedeschi LO, Ferraz JBS. Using a system of differential equations that models cattle growth to uncover the genetic basis of complex traits [Internet]. Journal of Applied Genetics. 2017 ; 58( 3): 393-400.Available from: https://doi.org/10.1007/s13353-017-0395-4
    • Vancouver

      Freua MC, Santana MH de A, Ventura RV, Tedeschi LO, Ferraz JBS. Using a system of differential equations that models cattle growth to uncover the genetic basis of complex traits [Internet]. Journal of Applied Genetics. 2017 ; 58( 3): 393-400.Available from: https://doi.org/10.1007/s13353-017-0395-4

    Referências citadas na obra
    Alexandre PA, Kogelman LJA, Santana MHA et al (2015) Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics 16:1073. doi: 10.1186/s12864-015-2292-8
    Aulchenko YS, Struchalin MV, Belonogova NM et al (2009) Predicting human height by Victorian and genomic methods. Eur J Hum Genet 17:1070–1075. doi: 10.1038/ejhg.2009.5
    Baldwin RL, Black JL (1979) Simulation of the effects of nutritional and physiological status on the growth of mammalian tissues. CSIRO Aust Anim Res Lab Tech 6:1–35
    Chizzotti ML, Tedeschi LO, Valadares Filho SC (2008) A meta-analysis of energy and protein requirements for maintenance and growth of Nellore cattle. J Anim Sci 86:1588–1597. doi: 10.2527/jas.2007-0309
    Das K, Li J, Wang Z et al (2011) A dynamic model for genome-wide association studies. Hum Genet 129:629–639. doi: 10.1007/s00439-011-0960-6
    Santana MHA, Oliveira Junior GA, Cesar ASM et al (2016) Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle. J Appl Genet 57(4):495–504. doi: 10.1007/s13353-016-0344-7
    Freua MC, de Almeida Santana MH, Ferraz JBS (2016) A new approach for applied nutritional models: Computing parameters of dynamic mechanistic growth models using genome-wide prediction. Livest Sci 190(2016):131–135. doi: 10.1016/j.livsci.2016.06.013
    Fu G, Luo J, Berg A et al (2011) A dynamic model for functional mapping of biological rhythms. J Biol Dyn 5:84–101. doi: 10.1080/17513758.2010.491558
    Gjuvsland AB, Vik JO, Beard DA et al (2013) Bridging the genotype–phenotype gap: what does it take? J Physiol 591:2055–2066. doi: 10.1113/jphysiol.2012.248864
    Gomes RC, Silva SL, Carvalho ME et al (2013) Protein synthesis and degradation gene SNPs related to feed intake, feed efficiency, growth, and ultrasound carcass traits in Nellore cattle. Genet Mol Res 12:2923–2936. doi: 10.4238/2013.August.12.8
    Hammer G, Cooper M, Tardieu F et al (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593. doi: 10.1016/j.tplants.2006.10.006
    Herd RM, Arthur PF (2009) Physiological basis for residual feed intake. J Anim Sci 87:E64–E71. doi: 10.2527/jas.2008-1345
    Hoch T, Agabriel J (2004) A mechanistic dynamic model to estimate beef cattle growth and body composition: 1. Model description. Agric Syst 81:1–15. doi: 10.1016/j.agsy.2003.08.005
    Hoti F, Sillanpää MJ (2006) Bayesian mapping of genotype × expression interactions in quantitative and qualitative traits. Heredity (Edinb) 97:4–18. doi: 10.1038/sj.hdy.6800817
    Hu ZL, Park CA, Wu XL, Reecy JM (2013) Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 41:D871–D879. doi: 10.1093/nar/gks1150
    Kennedy BW, van der Werf JH, Meuwissen TH (1993) Genetic and statistical properties of residual feed intake. J Anim Sci 71:3239–3250. doi: 10.2527/1993.71123239x
    Li J, Das K, Fu G et al (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27:516–523. doi: 10.1093/bioinformatics/btq688
    Li J, Wang Z, Li R, Wu R (2015) Bayesian group lasso for nonparametric varying-coefficient models with application to functional genome-wide association studies. Ann Appl Stat 9:640–664. doi: 10.1214/15-AOAS808
    National Research Council (NRC) (2000) Nutrient requirements of beef cattle, 7th edn. National Academies Press, Washington, DC
    Nordbø Ø, Gjuvsland AB, Nermoen A et al (2015) Towards causally cohesive genotype–phenotype modelling for characterization of the soft-tissue mechanics of the heart in normal and pathological geometries. J R Soc Interface 12:20141166. doi: 10.1098/rsif.2014.1166
    Oltjen JW, Bywater AC, Baldwin RL, Garrett WN (1985) Development of a dynamic model of beef cattle growth and composition. J Anim Sci 62:86–97. doi: 10.2134/jas1986.62186x
    R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
    Raftery AE, Lewis S (1992) How many iterations in the Gibbs sampler. Bayesian Stat 4(2):763–773
    Santana MHA, Rossi P, Almeida R, Cucco DC (2012) Feed efficiency and its correlations with carcass traits measured by ultrasound in Nellore bulls. Livest Sci 145:252–257. doi: 10.1016/j.livsci.2012.02.012
    Santana MHA, Ventura RV, Utsunomiya YT et al (2015) A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. J Anim Breed Genet 132:420–427. doi: 10.1111/jbg.12167
    Sargolzaei M, Chesnais JP, Schenkel FS (2014) A new approach for efficient genotype imputation using information from relatives. BMC Genomics 15:478. doi: 10.1186/1471-2164-15-478
    Soetaert K, Petzoldt T (2010) Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. J Stat Softw 33:1–28
    Tedeschi LO, Fox DG, Guiroy PJ (2004) A decision support system to improve individual cattle management. 1. A mechanistic, dynamic model for animal growth. Agric Syst 79:171–204. doi: 10.1016/S0308-521X(03)00070-2
    van der Heijden G, Song Y, Horgan G et al (2012) SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Funct Plant Biol 39:870–877. doi: 10.1071/FP12019
    Vik JO, Gjuvsland AB, Li L et al (2011) Genotype-phenotype map characteristics of an in silico heart cell. Front Physiol 2:106. doi: 10.3389/fphys.2011.00106
    Wang Y, Gjuvsland AB, Vik JO et al (2012) Parameters in dynamic models of complex traits are containers of missing heritability. PLoS Comput Biol 8(4):e1002459. doi: 10.1371/journal.pcbi.1002459

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020