Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds (2018)
- Authors:
- Autor USP: PICCIONE, PAOLO - IME
- Unidade: IME
- DOI: 10.1007/s00245-017-9405-5
- Assunto: VARIEDADES RIEMANNIANAS
- Keywords: Exponential Asymptotic Stability; Klein Gordon Equation; Non-compact Riemannian Manifolds; nonlinear and locally distributed damping
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Applied Mathematics & Optimization
- ISSN: 0095-4616
- Volume/Número/Paginação/Ano: v. 78, n. 2, p. 219–265, 2018
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BORTOT, C. A; CAVALCANTI, M. M; DOMINGOS CAVALCANTI, V. N; PICCIONE, Paolo. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds. Applied Mathematics & Optimization[S.l.], Springer, v. 78, n. 2, p. 219–265, 2018. Disponível em: < http://dx.doi.org/10.1007/s00245-017-9405-5 > DOI: 10.1007/s00245-017-9405-5. -
APA
Bortot, C. A., Cavalcanti, M. M., Domingos Cavalcanti, V. N., & Piccione, P. (2018). Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds. Applied Mathematics & Optimization, 78( 2), 219–265. doi:10.1007/s00245-017-9405-5 -
NLM
Bortot CA, Cavalcanti MM, Domingos Cavalcanti VN, Piccione P. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds [Internet]. Applied Mathematics & Optimization. 2018 ; 78( 2): 219–265.Available from: http://dx.doi.org/10.1007/s00245-017-9405-5 -
Vancouver
Bortot CA, Cavalcanti MM, Domingos Cavalcanti VN, Piccione P. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds [Internet]. Applied Mathematics & Optimization. 2018 ; 78( 2): 219–265.Available from: http://dx.doi.org/10.1007/s00245-017-9405-5 - A variational theory for light rays on Lorentz manifolds
- Shortening null geodesics in Lorentzian manifolds: applications to closed light rays
- Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint
- Infinitely many solutions to the Yamabe problem on noncompact manifolds
- Morse theory for the travel time brachistochrones in stationary spacetimes
- On the geometry of Grassmannians and the symplectic group: the Maslov index and its applications
- Global existence of periodic travelling waves of an infinite non-linearly supported beam I. Continuous model
- New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court
- On the finiteness of light rays between a source and an observer on conformally stationary space-times
- A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation
Informações sobre o DOI: 10.1007/s00245-017-9405-5 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2843169.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) |
---|
Alabau-Boussouira, F.: Convexity and weighted inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005) |
Bessa, G.P., Montenegro, F., Piccione, P.: Riemannian submersions with discrete spectrum. J. Geom. Anal. (to appear). arXiv:1001.0853 |
Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei, Noordhoff International Publishing, Bucuresti Romania, Leyden (1976) |
Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992) |
Brézis, H.: Análisis Funcional. Teoría y Aplicaciones. Alianza Editorial, S.A., Madrid (1984) |
Brézis, H.: Operateurs Maximaux Monotones et Semigroups de Contractions dans les Spaces de Hilbert. North Holland Publishing Co., Amsterdam (1973) |
Brézis, H.: Autumn Course On Semigoups, Theory and Applications. Lecture Notes taken by L. COHEN. International Center for Theoretical Physics, Triest (1984) |
Brézis, H.: Cazenave T. Nonlinear Evolution Equations. Preliminary Version of Chapters 1,2 and 3 and the Appendix (1994) |
Burq, N., Gérard, P.: Contrôle Optimal des équations aux dérivées partielles. Url: http://www.math.u-psud.fr/~burq/articles/coursX (2001) |
Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007) |
Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Uniform Stabilization of the wave equation on compact surfaces and locally distributed damping. Trans. AMS 361(9), 4561–4580 (2009) |
Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result, -. Arch. Ration. Mech. Anal. 197, 925–964 (2010) |
Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189–237 (1996) |
Christianson, H.: Semiclassical non-concetration near hyperbolic orbits. J. Funct. Anal. 246(2), 145–195 (2007) |
Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. II. Springer, Berlin (1990) |
Dehman, B., Lebeau, G., Zuazua, E.: Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36, 525–551 (2003) |
Do Carmo, M.P.: Riemannian geometry Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston (1992) |
Donnelly, H., Li, P.: Pure point spectrum and negative curvature for noncompact manifolds. Duke Math. J. 46, 497–503 (1979) |
Evans, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, A.M.S |
Fukuoka, R.: Mollifier smoothing of tensor fields on differentiable manifolds and applications to Riemannian Geometry. arXiv:math.DG/0608230 |
Greene, R.E., Wu, H.: $$C^\infty $$ C ∞ -approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. 12(1), 47–84 (1979) |
Hebey, E.: Sobolev Space on Riemannian Manifolds. Springer, Berlin (1996) |
Hitrik, M.: Expansions and eigenfrequencies for damped wave equations. Journèes“Équations aux Dérivées Patielles” (Plestin-les-Gréves, 2001), Exp. No. VI, 10 pp., Univ. Nantes, Nantes (2001) |
Jorge, L.P., Xavier, F.: An inequality between the exterior diameter and the mean curvature of bounded immersions. Math. Z. 178, 77–82 (1981) |
Lasiecka, I., Triggiani, R., Yao, P.F.: An observability estimate in $$L^2 \times H^{-1}$$ L 2 × H - 1 for send order hyperbolic equations with variable coefficients. In: Control of Distributed Parameter and Stochastic systems. Kluwer (1999) |
Lasiecka, I., Tataru, D.: Uniform Boundary Stabilization of Semilinear Wave Equations with Nonlinear Boundary Damping. Lecture Notes in Pure and Applied Maths, vol. 142. Dekker, New York (1993) |
Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric conditions. Appl. Math. Optim. 25, 189–224 (1992) |
Lions, J.L.: Contrôlabilité Exacte Pertubations et Stabilisation de Systèmes Distribués. Masson, Paris (1988) |
Lions, J.L., Magenes, E.: Non-homogeneous Boudary Value Problems and Applications. Springer, Berlin (1972) |
Milnor, J.: Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton. Notes by L. Siebenmann and J. Sondow (1965) |
Pigola, S., Rigoli, M., Setti, A.: Maximum principle on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822) (2005) |
Rauch, J., Taylor, M.: Decay of solutions to n ondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975) |
Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974) |
Simon, J.: Compact Sets in the Space $${\bf L}^p(0,T;B)$$ L p ( 0 , T ; B ) . Annali di Matematica pura ed applicata 146(1), 65–96 (1987) |
Taylor Michael, E.: Partial Differential Equations I. Basic Theory, 2nd edn. Springer, Berlin (2010) |
Triggiani, R., Yao, P.E.: Calerman estimates with no lower-Oder terms for general Riemannian wave equations. Global uniquenees and observability in one shot. Appl. Math. Optim. 46, 331–375 (2002) |
Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman and Company, Glenview (1971) |
Yao, P., Lasiecka, I., Triggiani, R.: Inverse/observability estimates for second-order hiperbolic equations with variable coefficients. J. Math. Anal. Apl. 235, 13–57 (1999) |
Yao, P.: On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37(5), 1568–1599 (1999) |
Yao, P.: Modeling and control in vibrational and structural dynamics. A differential geometric approach. Chapman e Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton (2011). xiv+405 pp. ISBN: 978-1-4398-3455-8. (o livro dele) |
Yao, P., Liu, Y., Li, J.: Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations. J. Syst. Sci. Complex. 29(3), 657–680 (2016) |
Zeidler, E.: Nonlinear Functional Analysis and its Aplications. Vol 2A: Linear Monotone Operators. Springer, Berlin (1990) |
Zuazua, E.: Exponential decay for the semilinear wave equation whith localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1992) |