Exportar registro bibliográfico


Metrics:

Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects (2017)

  • Authors:
  • Autor USP: BUENO, MARIA RITA DOS SANTOS E PASSOS - IB
  • Unidade: IB
  • DOI: 10.1038/s41598-017-02721-0
  • Subjects: ANOMALIA CRANIOFACIAL; METILAÇÃO DE DNA; FISSURA LÁBIOPALATINA; EXPRESSÃO GÊNICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-017-02721-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALVIZI, Lucas; KE, Xiayi; BRITO, Luciano Abreu; et al. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects. Scientific Reports, London, v. 7, p. 1-8, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-02721-0 > DOI: 10.1038/s41598-017-02721-0.
    • APA

      Alvizi, L., Ke, X., Brito, L. A., Seselgyte, R., Moore, G. E., Stanier, P., & Passos-Bueno, M. R. (2017). Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects. Scientific Reports, 7, 1-8. doi:10.1038/s41598-017-02721-0
    • NLM

      Alvizi L, Ke X, Brito LA, Seselgyte R, Moore GE, Stanier P, Passos-Bueno MR. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects [Internet]. Scientific Reports. 2017 ; 7 1-8.Available from: http://dx.doi.org/10.1038/s41598-017-02721-0
    • Vancouver

      Alvizi L, Ke X, Brito LA, Seselgyte R, Moore GE, Stanier P, Passos-Bueno MR. Differential methylation is associated with non-syndromic cleft lip and palate and contributes to penetrance effects [Internet]. Scientific Reports. 2017 ; 7 1-8.Available from: http://dx.doi.org/10.1038/s41598-017-02721-0

    Referências citadas na obra
    Wilkie, A. O. & Morriss-Kay, G. M. Genetics of craniofacial development and malformation. Nat Rev Genet 2, 458–468 (2001).
    Clouthier, D. E. et al. Signaling Pathways Crucial for Craniofacial Development Revealed by Endothelin-A Receptor-Deficient Mice. Dev. Biol. 217, 10–24 (2000).
    Gou, Y., Zhang, T. & Xu, J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Current topics in developmental biology 115, (Elsevier Inc. 2015).
    Organization, W. H. Global registry and database on craniofacial anomalies Main editors: Hum. Genet. 4–6 (2001).
    Stanier, P. & Moore, G. E. Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Hum. Mol. Genet. 13(Spec No), R73–R81 (2004).
    Mossey, P. A., Little, J., Munger, R. G., Dixon, M. J. & Shaw, W. C. Cleft lip and palate. Lancet 374, 1773–1785 (2009).
    Brito, L. A. et al. Genetic contribution for non-syndromic cleft lip with or without cleft palate (NS CL/P) in different regions of Brazil and implications for association studies. Am. J. Med. Genet. Part A 155, 1581–1587 (2011).
    Grant, S. Fa et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24. J. Pediatr. 155, 909–913 (2009).
    Mangold, E. et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate. Nat Genet. 42, 24–6 (2010).
    Beaty, T. H. et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat. Genet. 42, 525–9 (2010).
    Brito, L. A. et al. IRF6 is a risk factor for nonsyndromic cleft lip in the Brazilian population. Am. J. Med. Genet. Part A 158 A, 2170–2175 (2012).
    Brito, L. A., Meira, J. G. C., Kobayashi, G. S. & Passos-Bueno, M. R. Genetics and management of the patient with orofacial cleft. Plast. Surg. Int. 2012, 782821 (2012).
    Schierding, W., Cutfield, W. S. & O’Sullivan, J. M. The missing story behind Genome Wide Association Studies: Single nucleotide polymorphisms in gene deserts have a story to tell. Front. Genet. 5, 1–7 (2014).
    Jia, Z. L. et al. Maternal malnutrition, environmental exposure during pregnancy and the risk of non-syndromic orofacial clefts. Oral Dis. 17, 584–589 (2011).
    Acuña-González, G. et al. Family history and socioeconomic risk factors for non-syndromic cleft lip and palate: a matched case-control study in a less developed country. Biomedica 31, 381–91 (2011).
    Meyer, Ka, Williams, P., Hernandez-Diaz, S. & Cnattingius, S. Smoking and the Risk of Oral Clefts. Epidemiology 15, 671–678 (2004).
    Puhó, E. H., Szunyogh, M., Métneki, J. & Czeizel, A. E. Drug treatment during pregnancy and isolated orofacial clefts in Hungary. Cleft Palate-Craniofacial J 44, 194–202 (2007).
    DeRoo, La, Wilcox, A. J., Drevon, Ca & Lie, R. T. First-trimester maternal alcohol consumption and the risk of infant oral clefts in Norway: a population-based case-control study. Am. J. Epidemiol. 168, 638–46 (2008).
    Deck, G. M., Nadkarni, N., Montouris, G. D. & Lovett, A. Congenital malformations in infants exposed to antiepileptic medications in utero at Boston Medical Center from 2003 to 2010. Epilepsy Behav. 51, 166–169 (2015).
    Chambers, J. C. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: A nested case-control study. Lancet Diabetes Endocrinol. 3, 526–534 (2015).
    Florath, I. et al. Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia 59, 130–138 (2016).
    Soriano-Tárraga, C. et al. Epigenome-wide association study identifies TXNIP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum. Mol. Genet. 25, 1–11 (2015).
    Dempster, E. L. et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20, 4786–4796 (2011).
    Wockner, L. F. et al. Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl. Psychiatry 4, e339 (2014).
    Jugessur, a, Farlie, P. G. & Kilpatrick, N. The genetics of isolated orofacial clefts: from genotypes to subphenotypes. Oral Dis. 15, 437–53 (2009).
    Lan, Y. et al. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice. Dev. Dyn. 235, 1448–1454 (2006).
    Song, L. et al. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 136, 3161–3171 (2009).
    Menezes, R. et al. Studies with Wnt genes and nonsyndromic cleft lip and palate. Birth Defects Res. Part A - Clin. Mol. Teratol. 88, 995–1000 (2010).
    Ke, C.-Y., Xiao, W.-L., Chen, C.-M., Lo, L.-J. & Wong, F.-H. IRF6 is the mediator of TGFβ3 during regulation of the epithelial mesenchymal transition and palatal fusion. Sci. Rep. 5, 12791 (2015).
    Kang, P. & Svoboda, K. K. H. Critical reviews in oral biology & medicine Epithelial-Mesenchymal Transformation during Craniofacial Development. Crit. Rev. Oral Biol. Med. 678–690 (2005).
    Brito, L. A. et al. Rare Variants in the Epithelial Cadherin Gene Underlying the Genetic Etiology of Nonsyndromic Cleft Lip with or without Cleft Palate. Hum. Mutat. 36, 1029–1033 (2015).
    Finer, S. et al. Maternal gestational diabetes is associated with genome-wide DNA methylation variation in placenta and cord blood of exposed offspring. Hum. Mol. Genet. 24, 3021–9 (2015).
    Ludwig, K. U. et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci. Nat. Genet. 44, 968–971 (2012).
    Uslu, V. V. et al. Long-range enhancers regulating Myc expression are required for normal facial morphogenesis. Nat. Genet. 46, 1–24 (2014).
    Topczewski, J., Dale, R. M. & Sisson, B. E. Planar cell polarity signaling in craniofacial development. Organogenesis 7, 255–9 (2011).
    Yang, T. et al. Analysis of PRICKLE1 in human cleft palate and mouse development demonstrates rare and common variants involved in human malformations. Mol. Genet. genomic Med 2, 138–51 (2014).
    Macara, I. G. Parsing the polarity code. Nat. Rev. Mol. Cell Biol. 5, 220–231 (2004).
    Joubert, B. R. et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 98, 680–696 (2016).
    Grady, W. M. et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat. Genet. 26, 16–17 (2000).
    Machado, J. C. et al. E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. Oncogene 20, 1525–1528 (2001).
    Juriloff, D. M., Harris, M. J., Mager, D. L. & Gagnier, L. Epigenetic Mechanism Causes Wnt9B Deficiency and Nonsyndromic Cleft Lip and Palate in the A/WySn Mouse Strain. Birth Defects Res. Part A - Clin. Mol. Teratol. 100, 772–788 (2014).
    Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 16, 519–532 (2015).
    Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).
    Pan, B. et al. Alcohol Consumption During Gestation Causes Histone3 Lysine9 Hyperacetylation and an Alternation of Expression of Heart Development-Related Genes in Mice. Alcohol. Clin. Exp. Res. 38, 2396–2402 (2014).
    Ungerer, M., Knezovich, J. & Ramsay, M. In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res 35, 37–46 (2013).
    Sundar, I. K., Nevid, M. Z., Friedman, A. E. & Rahman, I. Cigarette smoke induces distinct histone modifications in lung cells: Implications for the pathogenesis of COPD and lung cancer. Journal of Proteome Research 13 (2014).
    Krämer, O. H. et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 22, 3411–3420 (2003).
    Assenov, Y. et al. Comprehensive analysis of DNA methylation data with RnBeads. Nat. Methods 11, 1138–40 (2014).
    Masser, D. R., Berg, A. S. & Freeman, W. M. Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6, 1 (2013).
    Lutsik, P. et al. BiQ Analyzer HT: Locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing. Nucleic Acids Res. 39, 551–556 (2011).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021