Exportar registro bibliográfico


Metrics:

A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil (2017)

  • Authors:
  • Autor USP: BASSO, LUIZ CARLOS - ESALQ
  • Unidade: ESALQ
  • DOI: 10.1007/s10482-017-0868-9
  • Subjects: ETANOL; SACCHAROMYCES; FERMENTAÇÃO INDUSTRIAL
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10482-017-0868-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RAGHAVENDRAN, Vijayendran; BASSO, Thalita Peixoto; SILVA, Juliana Bueno da; BASSO, Luiz Carlos; GOMBERT, Andreas Karoly. A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil. Antonie van Leeuwenhoek, Amsterdam, Springer Nature, v. 110, p. 971–983, 2017. Disponível em: < http://dx.doi.org/10.1007/s10482-017-0868-9 > DOI: 10.1007/s10482-017-0868-9.
    • APA

      Raghavendran, V., Basso, T. P., Silva, J. B. da, Basso, L. C., & Gombert, A. K. (2017). A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil. Antonie van Leeuwenhoek, 110, 971–983. doi:10.1007/s10482-017-0868-9
    • NLM

      Raghavendran V, Basso TP, Silva JB da, Basso LC, Gombert AK. A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil [Internet]. Antonie van Leeuwenhoek. 2017 ; 110 971–983.Available from: http://dx.doi.org/10.1007/s10482-017-0868-9
    • Vancouver

      Raghavendran V, Basso TP, Silva JB da, Basso LC, Gombert AK. A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil [Internet]. Antonie van Leeuwenhoek. 2017 ; 110 971–983.Available from: http://dx.doi.org/10.1007/s10482-017-0868-9

    Referências citadas na obra
    Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195
    Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270. doi: 10.1101/gr.091777.109
    Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat Biotechnol 15:1351–1357. doi: 10.1038/nbt1297-1351
    Barnett J (2003) A history of research on yeasts 5: the fermentation pathway. Yeast 20:509–543. doi: 10.1002/yea.986
    Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163. doi: 10.1111/j.1567-1364.2008.00428.x
    Basso LC, Basso TO, Rocha SN (2010) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Dr Marco Aurelio Dos Santos Bernardes (Ed.) (ed) Biofuel production-recent developments and prospects
    Beato FB, Bergdahl B, Rosa CA, Forster J, Gombert AK (2016) Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications. FEMS Yeast Res 16:1–13. doi: 10.1093/femsyr/fow076
    BP (2016) Statistical review of world energy. http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html . Accessed 16 Jun 2016
    Brown NA, de Castro PA, de Castro Pimentel Figueiredo B, Savoldi M, Buckeridge MS, Lopes ML, de Lima Paullilo SC, Borges EP, Amorim HV, Goldman MH, Bonatto D, Malavazi I, Goldman GH (2013) Transcriptional profiling of Brazilian Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Res 13:277–290. doi: 10.1111/1567-1364.12031
    Conroy N, Tebble I, Lye GJ (2015) Creation of an ultra scale-down bioreactor mimic for rapid development of lignocellulosic enzymatic hydrolysis processes. J Chem Technol Biotechnol 90:1983–1990. doi: 10.1002/jctb.4801
    Delente J, Akin C, Krabbe E, Ladenburg K (1969) Fluid dynamics of anaerobic fermentation. Biotechnol Bioeng 11:631–646. doi: 10.1002/bit.260110410
    Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991. doi: 10.1007/s00253-012-4631-x
    Della-bianca BE, De Hulster E, Pronk JT, van Maris AJ, Gombert AK (2014) Physiology of the fuel ethanol strain. FEMS Yeast Res 14:1196–1205. doi: 10.1111/1567-1364.12217
    dos Santos LV, de Barros Grassi MC, Gallardo JCM, Pirolla RAS, Calderón LL, de Carvalho-Netto OV, Parreiras LS, Camargo ELO, Drezza AL, Missawa SK, Teixeira GS, Lunardi I, Pereira GAG (2016) Second-generation ethanol: the need is becoming a reality. Ind Biotechnol 12:40–57. doi: 10.1089/ind.2015.0017
    Egli T (2015) Microbial growth and physiology: a call for better craftsmanship. Front Microbiol 6:287. doi: 10.3389/fmicb.2015.00287
    Gombert AK, van Maris AJ (2015) Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes. Curr Opin Biotechnol 33:81–86. doi: 10.1016/j.copbio.2014.12.012
    Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Fact 4:31. doi: 10.1186/1475-2859-4-31
    Hensing M, Vrouwenvelder H, Hellinga C, Baartmans R, van Dijken H (1994) Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol 42:516–521. doi: 10.1007/BF00173914
    Humphrey A (1998) Shake flask to fermentor: what have we learned? biochemical engineering : the beginnings. Biotechnol Prog 14:3–7
    Kwolek-Mirek M, Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14:1068–1079
    Larsson C, Nilsson A, Blomberg A, Gustafsson L (1997) Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon or nitrogen-limiting conditions. J Bacteriol 179:7243–7250
    Luttik MAH, van Spanning R, Schipper D, van Dijken JP, Pronk JT (1997) The low biomass yields of the acetic acid bacterium Acetobacter pasteurianus are due to a low stoichiometry of respiration-coupled proton translocation. Appl Environ Microbiol 63:3345–3351
    Marques WL, Raghavendran V, Stambuk BU, Gombert AK (2016) Sucrose and Saccharomyces cerevisiae: a relationship most sweet. FEMS Yeast Res 16:1–16. doi: 10.1093/femsyr/fov107
    Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WH, Klaassen P, Paddon CJ, Platt D, Kötter P, van Ham RC, Reinders MJ, Pronk JT, de Ridder D, Daran JM (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36. doi: 10.1186/1475-2859-11-36
    Nishida O, Kuwazaki S, Suzuki C, Shima J (2004) Superior molasses assimilation, stress tolerance, and trehalose accumulation of baker’s yeast isolated from dried sweet potatoes (hoshi-imo). Biosci Biotechnol Biochem 68:1442–1448
    Noorman H (2011) An industrial perspective on bioreactor scale-down: what we can learn from combined large-scale bioprocess and model fluid studies. Biotechnol J 6:934–943. doi: 10.1002/biot.201000406
    Novacana (2016a) As usinas de Açúcar e Etanol do Brasil. https://www.novacana.com/usinas-brasil/ . Accessed 15 Mar 2017
    Novacana (2016b) Governo Federal explica como o Brasil vai dobrar a produção de etanol. In: 2016-02-17. https://www.novacana.com/n/etanol/mercado/futuro/governo-federal-explica-brasil-dobrar-producao-etanol-170216/ . Accessed 26 Oct 2016
    Panek A (1963) Function of trehalose in Baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 100:422–425. doi: 10.1016/0003-9861(63)90107-3
    Pereira FB, Gomes DG, Guimarães PM, Teixeira JA, Domingues L (2012) Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Biotechnol Lett 34:45–53. doi: 10.1007/s10529-011-0735-0
    Schmalzriedt S, Jenne M, Mauch K, Reuss M (2003) Integration of physiology and fluid dynamics. In: von Stockar U, van der Wielen L (eds) Process integration in biochemical engineering. Berlin, Heidelberg, pp 19–68
    SGD Saccharomyces genome database. http://www.yeastgenome.org/
    Unica (2016) União Da Indústria De Cana De Açúcar. http://www.unica.com.br/ . Accessed 29 Jan 2016
    Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:405–412. doi: 10.1099/00221287-136-3-395
    Viana T, Loureiro-Dias MC, Prista C (2014) Efficient fermentation of an improved synthetic grape must by enological and laboratory strains of Saccharomyces cerevisiae. AMB Express 4:16. doi: 10.1186/s13568-014-0016-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021