A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows (2016)
- Authors:
- Autor USP: TOMÉ, MURILO FRANCISCO - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jcp.2016.01.032
- Assunto: MECÂNICA DOS FLUÍDOS COMPUTACIONAL
- Keywords: Integral K-BKZ constitutive equation; Deformation fields; Implicit method; Analytic solution in channel flow; Free surface; Jet buckling
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Computational Physics
- ISSN: 0021-9991
- Volume/Número/Paginação/Ano: v. 311, p. 114-141, Abril 2016
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
TOMÉ, Murilo Francisco et al. A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows. Journal of Computational Physics, v. 311, p. 114-141, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jcp.2016.01.032. Acesso em: 02 abr. 2025. -
APA
Tomé, M. F., Bertoco, J., Oishi, C. M., Araújo, M. S. B., Cruz, D., Pinho, F. T., & Vynnycky, M. (2016). A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows. Journal of Computational Physics, 311, 114-141. doi:10.1016/j.jcp.2016.01.032 -
NLM
Tomé MF, Bertoco J, Oishi CM, Araújo MSB, Cruz D, Pinho FT, Vynnycky M. A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows [Internet]. Journal of Computational Physics. 2016 ; 311 114-141.[citado 2025 abr. 02 ] Available from: https://doi.org/10.1016/j.jcp.2016.01.032 -
Vancouver
Tomé MF, Bertoco J, Oishi CM, Araújo MSB, Cruz D, Pinho FT, Vynnycky M. A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows [Internet]. Journal of Computational Physics. 2016 ; 311 114-141.[citado 2025 abr. 02 ] Available from: https://doi.org/10.1016/j.jcp.2016.01.032 - Numerical solution of the upper-convected maxwell model for three-dimensional free surface flows
- Numerical technique for solving unsteady non-newtonian free surface flows
- A computational study of some rheological influences on the "splashing experiment"
- Two studies in process modelling: injection moulding and resin film infusion
- A numerical method for simulating viscoelastic flows governed by the integral maxwell model
- Numerical simulation of two-dimensional nematic liquid crystal flows
- A numerical technique for solving the Oldroyd-B model for the whole range of viscosity ratios
- The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids
- Gensmac: an updated marker and cell techniques for free surface flows in general domains
- Numerical simulation of viscoelastic flows using integral constitutive equations: a finite difference approach
Informações sobre o DOI: 10.1016/j.jcp.2016.01.032 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas