Exportar registro bibliográfico


Metrics:

Antidyskinetic effect of 7-nitroindazole and sodium nitroprusside associated with amantadine in a rat model of parkinson’s disease (2016)

  • Authors:
  • USP affiliated authors: SILVA, CELIA APARECIDA DA - FORP ; GUIMARAES, ELAINE APARECIDA DEL BEL BELLUZ - FORP
  • Unidade: FORP
  • DOI: 10.1007/s12640-016-9618-4
  • Subjects: GLUTAMATOS; ÓXIDO NÍTRICO; AGENTES DOPAMINÉRGICOS; DOENÇA DE PARKINSON
  • Keywords: Glutamate; Nitric oxide; Dopamine; Abnormal involuntary movements; L-DOPA-induced dyskinesia
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s12640-016-9618-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BORTOLANZA, Mariza; SANTOS, Keila D. Bariotto dos; PEREIRA, Maurício dos Santos; SILVA, Célia Aparecida da; DEL BEL, Elaine Aparecida. Antidyskinetic effect of 7-nitroindazole and sodium nitroprusside associated with amantadine in a rat model of parkinson’s disease. Neurotoxicity Research, New York, v. 30, n. 1, p. 88-100, 2016. Disponível em: < http://dx.doi.org/10.1007/s12640-016-9618-4 > DOI: 10.1007/s12640-016-9618-4.
    • APA

      Bortolanza, M., Santos, K. D. B. dos, Pereira, M. dos S., Silva, C. A. da, & Del Bel, E. A. (2016). Antidyskinetic effect of 7-nitroindazole and sodium nitroprusside associated with amantadine in a rat model of parkinson’s disease. Neurotoxicity Research, 30( 1), 88-100. doi:10.1007/s12640-016-9618-4
    • NLM

      Bortolanza M, Santos KDB dos, Pereira M dos S, Silva CA da, Del Bel EA. Antidyskinetic effect of 7-nitroindazole and sodium nitroprusside associated with amantadine in a rat model of parkinson’s disease [Internet]. Neurotoxicity Research. 2016 ; 30( 1): 88-100.Available from: http://dx.doi.org/10.1007/s12640-016-9618-4
    • Vancouver

      Bortolanza M, Santos KDB dos, Pereira M dos S, Silva CA da, Del Bel EA. Antidyskinetic effect of 7-nitroindazole and sodium nitroprusside associated with amantadine in a rat model of parkinson’s disease [Internet]. Neurotoxicity Research. 2016 ; 30( 1): 88-100.Available from: http://dx.doi.org/10.1007/s12640-016-9618-4

    Referências citadas na obra
    Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G, Hammers A, Brooks DJ (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134(Pt 4):979–986. doi: 10.1093/brain/awr028
    Barnum CJ, Eskow KL, Dupre K, Blandino P Jr, Deak T, Bishop C (2008) Exogenous corticosterone reduces L-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for interleukin-1beta. Neuroscience 156(1):30–41
    Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Björklund A, Carta M (2013) Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord 28(8):1088–1096. doi: 10.1002/mds.25366
    Bibbiani F, Oh JD, Kielaite A, Collins MA, Smith C, Chase TN (2005) Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp Neurol 196(2):422–429. doi: 10.1016/j.expneurol.2005.08.017
    Blanchet PJ, Konitsiotis S, Chase TN (1998) Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord 13(5):798–802
    Blanpied TA, Clarke RJ, Johnson JW (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 25(13):3312–3322. doi: 10.1523/JNeurosci.4262-04
    Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel EA (2015a) Glial activation is associated with L-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 73:377–387
    Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel EA (2015b) Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson’s disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 370(1672):20140190
    Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 20(8):919–931. doi: 10.1002/mds.20612
    Buisson B, Bertrand D (1998) Open-channel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:555–563
    Bujas-Bobanovic M, Bird DC, Robertson HA, Dursun SM (2000) Blockade of phencyclidine-induced effects by a nitric oxide donor. Br J Pharmacol 130(5):1005–1012
    Cenci MA, Lundblad M (2007) Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc Neurosci 9:25. doi: 10.1002/0471142301.ns0925s41
    Cenci MA, Lee CS, Björklund A (1998) L-DOPA induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2706. doi: 10.1046/j.1460-9568.1998.00285.x
    Cenci MA, Ohlin KE, Odin P (2011) Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson’s disease. CNS Neurol Disord Drug Targets 10(6):670–684
    Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274(39):27467–27473
    Crosby NJ, Deane KH, Clarke CE (2003) Amantadine for dyskinesia in Parkinson’s disease. Cochrane Database Syst Rev 2:CD003467
    Czarnecka A, Lenda T, Domin H, Konieczny J, Smiałowska M, Lorenc-Koci E (2013) Alterations in the expression of nNOS in the substantia nigra and subthalamic nucleus of 6-OHDA-lesioned rats: the effects of chronic treatment with l-DOPA and the nitric oxide donor, molsidomine. Brain Res 1541:92–105
    Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 179(1):76–89. doi: 10.1016/j.bbr.2007.01.013
    Del Bel EA, Guimarães FS, Bermúdez-Echeverry M, Gomes MZ, Schiaveto-de-souza A, Padovan-Neto FE, Tumas V, Barion-Cavalcanti AP, Lazzarini M, Nucci-da-Silva LP, de Paula-Souza D (2005) Role of nitric oxide on motor behavior. Cell Mol Neurobiol 25:371–392
    Del-Bel E, Padovan-Neto FE, Raisman-Vozari R, Lazzarini M (2011) Role of nitric oxide in motor control: implications for Parkinson’s disease pathophysiology and treatment. Curr Pharm Des 17(5):471–488
    Del-Bel E, Padovan-Neto FE, Szawka RE, da-Silva CA, Raisman-Vozari R, Anselmo-Franci J, Romano-Dutra AC, Guimaraes FS (2014) Counteraction by nitric oxide synthase inhibitor of neurochemical alterations of dopaminergic system in 6-OHDA-lesioned rats under L-DOPA treatment. Neurotox Res 25(1):33–44. doi: 10.1007/s12640-013-9406-3
    Del-Bel E, Padovan-Neto FE, Bortolanza M, Tumas V, Aguiar AS Jr, Raisman-Vozari R, Prediger RD (2015) Nitric oxide, a new player in L-DOPA-induced dyskinesia? Front Biosci (Elite Ed) 7:168–192
    Feelisch M (1998) The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedeberg’s Arch Pharmacol 358:113–122
    Fiorentini C, Busi C, SpanoPierFranco Missale C (2008) Role of receptor heterodimers in the development of l-dopa-induced dyskinesias in the 6-hydroxydopamine rat model of Parkinson’s disease. Parkinsonism Relat Disord 14(2):159–164. doi: 10.1016/j.parkreldis.2008.04.022
    Fisher A, Biggs CS, Starr MS (1998) Differential effects of NMDA and non-NMDA antagonists on the activity of aromatic l-amino acid decarboxylase activity in the nigrostriatal dopamine pathway of the rat. Brain Res 792:126–132
    Gardoni F, Sgobio C, Pendolino V, Calabresi P, Di Luca M, Picconi B (2012) Targeting GluN2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol Aging 33:2138–2144. doi: 10.1016/j.neurobiolaging.2011.06.019
    Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27(11):2783–2802. doi: 10.1111/j.1460-9568.2008.06285.x
    Giorgi M, D’Angelo V, Esposito Z, Nuccetelli V, Sorge R, Martorana A, Stefani A, Bernardi G, Sancesario G (2008) Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: new aspects in the pathogenetic mechanisms. Eur J Neurosci 28:941–950
    Gomes MZ, Del-Bel EA (2003) Effects of electrolytic and 6-OHDA lesions of rat nigrostriatal pathway on NO-synthase and NADPH-d. Brain Res Bull 62(2):107–115. doi: 10.1016/j.brainresbull.2003.08.010
    González-Aparicio R, Moratalla R (2014) Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson’s disease. Neurobiol Dis 62:416–425
    Griscavage JM, Fukuto JM, Komori Y, Ignarro LJ (1994) Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 269(34):21644–21649
    Ho GP, Selvakumar B, Mukai J, Hester LD, Wang Y, Gogos JA, Snyder SH (2011) S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71:131–141. doi: 10.1016/j.neuron.2011.05.033
    Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2013) The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65(1):171–222. doi: 10.1124/pr.111.005678
    Hurley MJ, Jackson MJ, Smith LA, Rose S, Jenner P (2005) Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur J Neurosci 21(12):3240–3250
    Iravani MM, Jenner P (2011) Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm 118:1661–1690
    Jankovic J (2005) Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord 20(11):11–16
    Jenner P (2008) Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9(9):665–677. doi: 10.1038/nrn2471
    Kalia L, Brotchie JM, Fox SH (2013) Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord 28(2):131–144. doi: 10.1002/mds.25273
    Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24:211–215
    Kopincová J, Púzserová A, Bernátová I (2011) Biochemical aspects of nitric oxide synthase feedback regulation by nitric oxide. Interdiscip Toxicol 4(2):63–68. doi: 10.2478/v10102-011-0012-z
    Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740
    Kornhuber J, Shoppmeyer K, Riederer P (1993) Affinity of 1-aminoadamantanes for the sigma binding site in post-mortem human frontal cortex. Neurosci Lett 163(2):129–131
    Lee CS, Cenci MA, Schulzer M, Bjorklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 123(7):1365–1379. doi: 10.1093/brain/123.7.1365
    Li W, Xue J, Niu C, Fu H, Lam CS, Luo J, Chan HH, Xue H, Kan KK, Lee NT, Li C, Pang Y, Li M, Tsim KW, Jiang H, Chen K, Li X, Han Y (2007) Synergistic neuroprotection by bis(7)-tacrine via concurrent blockade of N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase. Mol Pharmacol 71:1258–1267
    Luginger E, Wenning GK, Bosch S, Poewe W (2000) Beneficial effects of amantadine on L-dopa-induced dyskinesia in Parkinson’s disease. Mov Disord 15(5):873–878
    Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132. doi: 10.1046/j.0953-816x.2001.01843.x
    Macchio GJ, Ito V, Sahgal V (1993) Amantadine-induced coma. Arch Phys Med Rehabil 74(10):1119–1120
    Marin C, Papa S, Engber TM, Bonastre M, Tolosa E, Chase TN (1996) MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats. Brain Res 736(1–2):202–205. doi: 10.1016/0006-8993(96)00693-2
    Marotta D, Marini A, Banaudha K, Maharaj S, Ives J, Morrissette CR, Jonas WB (2002) Non-linear effects of cycloheximide in glutamate-treated cultured rat cerebellar neurons. Neurotoxicology 23(3):307–312. doi: 10.1016/S0161-813X(02)00058-X
    Matsubayashi H, Swanson KL, Albuquerque EX (1997) Amantadine inhibits nicotinic acetylcholine receptor function in hippocampal neurons. J Pharmacol Exp Ther 281:834–844
    Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393. doi: 10.1038/nrd3430
    Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A, Prigent A, Picconi B, Calabresi P, Hirsch EC, Obeso JA, Di Luca M, Gardoni F (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 6(9):245. doi: 10.3389/fncel.2015.00245.eCollection2015
    Metman LV, Del Dotto P, LePoole K, Konitsiotis S, Fang J, Chase TN (1999) Amantadine for levodopa-induced dyskinesia: a 1-year follow-up study. Arch Neurol 56(11):1383–1386. doi: 10.1001/archneur.56.11.1383
    Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA (2010) Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol 588(18):3415–3424. doi: 10.1113/jphysiol.2010.190181
    Morin N, Di Paolo T (2014) Pharmacological treatments inhibiting levodopa-induced dyskinesias in MPTP-lesioned monkeys: brain glutamate biochemical correlates. Front Neurol 5(5):144. doi: 10.3389/fneur.2014.00144
    Mustafa AK, Kumar M, Selvakumar B, Ho GP, Ehmsen JT, Barrow RK, Amzel LM, Snyder SH (2007) Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of d-serine formation. Proc Natl Acad Sci USA 104:2950–2955. doi: 10.1073/pnas.0611620104
    Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 76(7):2157–2163
    Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Männistö PT, Hong JS (2011) Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology 61(4):574–582
    Padovan-Neto FE, Echeverry MB, Tumas V, Del-Bel EA (2009) Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neuroscience 159(3):927–935. doi: 10.1016/j.neuroscience.2009.01.034
    Padovan-Neto FE, Echeverry MB, Chiavegatto S, Del-Bel EA (2011) Nitric oxide synthase inhibitor improves de novo and longterm l-DOPA-induced dyskinesia in hemiparkinsonian rats. Front Syst Neurosci. doi: 10.3389/fnsys.2011.00040
    Padovan-Neto FE, Ferreira NR, de Oliveira-Tavares D, de Aguiar D, da Silva CA, Raisman-Vozari R, Del Bel E (2013) Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/deltaFosB expression. Neurosci Lett 29(541):126–131. doi: 10.1016/j.neulet.2013.02.015
    Padovan-Neto FE, Cavalcanti-Kiwiatkoviski R, Carolino RO, Anselmo-Franci J, Del Bel EA (2015) Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology 89:87–99. doi: 10.1016/j.neuropharm.2014.08.019
    Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E (2004) Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J Neurosci 19(8):2212–2220. doi: 10.1111/j.0953-816X.2004.03297.x
    Picconi B, Bagetta V, Ghiglieri V, Paillè V, Di Filippo M, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, Calabresi P (2011) Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134:375–387
    Rascol O, Perez-Lloret S, Ferreira JJ (2015) New treatments for levodopa-induced motor complications. Mov Disord 30(11):1451–1460. doi: 10.1002/mds.26362
    Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA (2009) Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 330(1):227–235. doi: 10.1124/jpet.108.150425
    Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848. doi: 10.1126/science.284.5421.1845
    Shannon KM, Goetz CG, Carroll VS, Tanner CM, Klawans HL (1987) Amantadine and motor fluctuations in chronic Parkinson’s disease. Clin Neuropharmacol 10(6):522–526
    Solís O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 73:49–59. doi: 10.1016/j.nbd.2014.09.010
    Takuma K, Tanaka T, Takahashi T, Hiramatsu N, Ota Y, Ago Y, Matsuda T (2012) Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induced dyskinesiain hemi-Parkinsonian rats. Eur J Pharmacol 683(1–3):166–173. doi: 10.1016/j.ejphar.2012.03.008
    Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M (2004) Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:141–143
    Trevlopoulou A, Touzlatzi N, Pitskas N (2016) The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats. Psychopharmacology 233(6):1045–1054. doi: 10.1007/s00213-015-4181-x
    Tronci E, Fidalgo C, Zianni E, Collu BM, Stancampiano R, Morelli M, Gardoni F, Carta M (2014) Effet of memantine on L-DOPA induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson’s disease. Neuroscience 265:245–252. doi: 10.1016/j.neuroscience.2014.01.042
    Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, VomSaal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455. doi: 10.1210/er.2011-1050
    Wang JQ, Chu XP, Guo ML, Jin DZ, Xue B, Berry TJ, Fibuch EE, Mao LM (2012) Modulation of ionotropic glutamate receptors and acid-sensing ion channels by nitric oxide. Front Physiol 3:164. doi: 10.3389/fphys.2012.00164
    Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS (2003) Large effects from small exposures: I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111(8):994–1006
    Winkler C, Kirik D, Björklund A, Cenci MA (2002) LDOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186. doi: 10.1006/nbdi.2002.0499
    Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, Ott E, Kloiber I, Haubenberger D, Auff E, Poewe W (2010) Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 25(10):1357–1363. doi: 10.1002/mds.23034

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021