Exportar registro bibliográfico


Metrics:

Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles (2016)

  • Authors:
  • Autor USP: CORIO, PAOLA - IQ
  • Unidade: IQ
  • DOI: 10.1186/s11671-016-1538-y
  • Subjects: NANOPARTÍCULAS; ASPERGILLUS; PROTEÍNAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1186/s11671-016-1538-y (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BALLOTTIN, Daniela; FULAZ, Stephanie; SOUZA, Michele L; et al. Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Research Letters, New York, v. 11, p. 1-9 art. 313, 2016. Disponível em: < http://dx.doi.org/10.1186/s11671-016-1538-y > DOI: 10.1186/s11671-016-1538-y.
    • APA

      Ballottin, D., Fulaz, S., Souza, M. L., Corio, P., Rodrigues, A. G., Souza, A. O., et al. (2016). Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Research Letters, 11, 1-9 art. 313. doi:10.1186/s11671-016-1538-y
    • NLM

      Ballottin D, Fulaz S, Souza ML, Corio P, Rodrigues AG, Souza AO, Gaspari PM, Gomes AF, Gozzo F, Tasic L. Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles [Internet]. Nanoscale Research Letters. 2016 ; 11 1-9 art. 313.Available from: http://dx.doi.org/10.1186/s11671-016-1538-y
    • Vancouver

      Ballottin D, Fulaz S, Souza ML, Corio P, Rodrigues AG, Souza AO, Gaspari PM, Gomes AF, Gozzo F, Tasic L. Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles [Internet]. Nanoscale Research Letters. 2016 ; 11 1-9 art. 313.Available from: http://dx.doi.org/10.1186/s11671-016-1538-y

    Referências citadas na obra
    Arun G, Eyini M, Gunasekaran P (2014) Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol Bioprocess Eng 19:1083–1090
    Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364
    Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem Int Ed 46:1222–4
    Grisolia J, Viallet B, Amiens C, Baster S, Cordan AS, Leroy Y, Soldano C, Brugger J, Ressier L (2009) 99% random telegraph signal-like noise in gold nanoparticle μ-stripes. Nanotechnology 20:355303–9
    Bullis K (2014) Nanoparticle networks promise cheaper batteries for storing renewable energy. MIT Technol Rev. http://www.technologyreview.com/news/526811/nanoparticle-networks-promise-cheaper-batteries-for-storing-renewable-energy/ . Accessed 30 Sep 2015
    Bajaj A, Miranda OR, Kim IB, Phillips RL, Jerry DJ, Bunz UHF, Rotello VM (2009) Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci U S A 106:10912–6
    Baker S, Kumar KM, Santosh P, Rakshith D, Satish S (2015) Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity. Spectrochim Acta A Mol Biomol Spectrosc 136:1434–1440
    Kuppusamy P, Ichwan SJA, Parine NR, Yusoff MM, Maniam GP, Govidan N (2015) Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. and studies on their physicochemical and biological properties. J Environ Sci 29:151–7
    Logeswari P, Silambarasan S, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–7
    Sinha SN, Paul D (2015) Phytosynthesis of silver nanoparticles using andrographis paniculata leaf extract and evaluation of their antibacterial activities. Spectrosc Lett 48:600–604
    Velusamy P, Das J, Pachaiappan R, Vaseeharan B, Pandian K (2015) Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind Crops Prod 66:103–9
    Tolaymat T, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in synthesis and applications: a systematic review and critical appraisal of peer-reviewed papers. Sci Tot Environ 408:999–1006
    Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122
    Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–6
    Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotech 9:8
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353
    Galdiero S, Falanga A, Cantisani M, Ingle A, Galdiero M, Rai M (2014) Silver nanoparticles a novel antibacterial and antiviral agents. In: Torchilin V (ed) Handbook of nanobiomedical research: fundamentals, applications and recent developments. World Scientific Publishing Company, Singapure, pp 565–594
    Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354
    Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720
    Ravindran A, Chandran P, Khan SS (2013) Biofunctionalized silver nanoparticles: Advances and prospects. Colloids Surf B Biointerfaces 105:342–352
    Ismail IM, Ewais HA (2015) Mechanistic and kinetic study of the formation of silver nanoparticles by reduction of silver(I) in the presence of surfactants and macromolecules. Transit Metal Chem 40:371–8
    Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32
    Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406
    Deepak V, Kalishwaralal K, Pandian SRK, Gurunathan S (2011) An Insight into the bacterial biogenesis of silver nanoparticles, industrial production and scale-up. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Sringer-Verlag, Berlin, pp 17–35
    Gupta IR, Anderson AJ, Rai M (2015) Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation. J Hazard Mater 286:48–54
    Rodrigues AG, Ping LY, Marcato PD, Alves OL, Silva MCP, Ruiz RC, Melo IS, Tasic L, De Souza AO (2013) Biogenic antimicrobial silver nanoparticles produced by fungi. Appl Microbiol Biotechnol 97:775–782
    Krijsheld P, Altelaar AFM, Post H, Ringrose JH, Muller WH, Heck AJR, Wosten HAB (2012) Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger. J Proteome Res 11:2807–2818
    Raliya R, Tarafdar JC (2012) Novel Approach for silver nanoparticle synthesis using Aspergillus terreus CZR-1: mechanism perspective. J Bionanosci 6:1–5
    Apte M, Sambre D, Gaikawad S, Joshi S, Bankar A, Kumar AR, Zinjarde S (2013) Psychrotrophic yeast Yarrowia lipolytica NCYC 789 mediates the synthesis of antimicrobial silver nanoparticles via cell-associated melanin. AMB Express 3:32
    Hyllested JA, Palanco ME, Hagen N, Mogensen KB, Kneipp K (2015) Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agentes. Beilstein J Nanotechnol 6:293–9
    Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 134:310–5
    Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotech 1:2696–2708
    Dahoumane SA, Wijesekera K, Filipe CDM, Brennan JD (2014) Stoichiometrically controlled production of bimetallic gold-silver alloy colloids using micro-alga cultures. J Colloid Interface Sci 416:67–72
    Xie J, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439
    Abdeen S, Geo S, Sukanya, Praseetha PK, Dhanya RP (2014) Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5:155–162
    Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841
    Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:1175–1180
    Gupta VK, Mach RL, Sreenivasaprasad S (2015) Fungal Biomolecules: sources, applications and recent developments. 1st ed. Wiley-Blackwell, India, pp 117–136
    Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160
    Adkins Y, Lennard B (2004) Proteins and peptides. In: Neeser JR, German JB (eds) Bioprocesses and biotechnology for functional foods and nutraceuticals. Marcel Dekker INC, New York, pp 149–174
    Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517
    Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan MI, Parischa R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519
    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650
    http://genome.jgi.doe.gov/Asptu1/Asptu1.home.html . Accessed 05 May 2016
    Agnihotri S, Mukherji S, Mukherji S (2013) Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 5:7328–7340
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101
    Klaus T, Joerger R, Olsson E, Granvqist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–4
    Käkien A, Ding F, Chen P, Mortimer M, Kahru A, Ke PC (2013) Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity. Nanotechnology 24:345101
    Banerjee V, Das KP (2013) Interaction of silver nanoparticles with proteins: a characteristic protein concentration dependent profile of SPR signal. Colloids Surf B Biointerfaces 111:71–9
    Bondarenko O, Ivask A, Kakinen A, Kurvet I, Kahru A (2013) Particle-cell contact enhances antibacterial activity of silver nanoparticles. PLoS One 8:64060
    Quaresma P, Soares L, Contar L, Miranda A, Osorio I, Carvalho P, Franco R, Pereira E (2009) Green photocatalytic synthesis of stable Au and Ag nanoparticles. Green Chem 11:1889–1893
    Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87:932–7
    Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interfac 156:1–13
    Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1995) Purification and mode of action of a low molecular mass endo-1,4-β-D-glucanase from Fusarium oxysporum. J Biotechnol 39:85–93
    Christakopoulos P, Nerinckx W, Kekos D, Macris B, Claeyssens M (1996) Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum. J Biotechnol 51:181–9
    Durán N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959
    Wen YM, Geitner NK, Chen R, Ding F, Chen PY, Andorfer RE, Govindan PN, Ke PC (2013) Binding of cytoskeletal proteins with silver nanoparticles. RSC Adv 3:22002–7
    Chung YC, Chen IH, Chen CJ (2008) The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 29:1807
    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface 145:83
    Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580
    Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun (Camb) 8:3018-9
    Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624
    Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24:1974–1982
    Toledo MAS, Santos CA, Mendes JS, Pelloso AC, Beloti LL, Crucello A, Favaro MTP, Santiago AS, Schneider DRS, Saraiva AM, Stach-Machado DR, Souza AA, Trivella DBB, Aparício R, Tasic L, Azzoni AR, Souza AP (1834) Small-angle X-ray scattering and in silico modelling approaches for the accurate functional annotation of an LysR-type transcriptional regulator. BBA Prot Proteom 2013:697–707
    Oliveira C, Santos-Filho N, Menaldo D, Boldrini-França J, Giglio J, Calderon J, Stábeli R, Rodrigues F, Tasic L, Silva S, Soares A (2011) Structural and functional characterization of a γ-type phospholipase A2 inhibitor from Bothrops jararacuçu snake plasma. Curr Top Med Chem 11:2509–2519
    Fattori J, Prando A, Assis LHP, Aparício R, Tasic L (2011) Structural insights on two hypothetical secretion chaperones from Xanthomonas axonopodis pv. citri. Protein J 6:126–135
    Delgado AV, González-Caballero F, Hunter RJ, Koopal LK, Lyklema J (2005) Measurement and interpretation of electrokinetic phenomena. Pure Appl Chem 77:1753–1805
    Treguer M, Rocco F, Lelong G, Nestour AL, Cardinal T, Maali A, Lounis B (2005) Fluorescent silver oligomeric clusters and colloidal particles. Solid State Sci 7:812–8
    Germar FV, Galan A, Llorca O, Carrascosa JL, Valpuesta JM, Mantele W, Muga A (1999) Conformational changes generated in GroEL during ATP hydrolysis as seen by time-resolved infrared spectroscopy. J Biol Chem 274:5508–5513
    Corbin J, Methot N, Wang HH, Baenziger JE, Blanton MP (1998) Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and fourier transform infrared spectroscopy. J Biol Chem 273:771
    Haris PI, Chapman D (1995) The conformational analysis of peptides using fourier transform IR spectroscopy. Biopolymers 37:251–263
    Pelton JP, McLean LR (2000) Spectroscopic methods for analysis of protein secondary structure. Anal Biochem 277:167–176
    NiFu F, DeOlieveira DB, Trumble WR, Sarkar HK, Singh BR (1994) Secondary structure estimation of proteins using the Amide III region of fourier transform infrared spectroscopy: application to analyze calcium-binding-induced structural changes in calsequestrin. Appl Spectrosc 48:1432–1441
    Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36:307–319
    George J, Thomas J (1999) Raman spectroscopy of protein and nucleic acid assemblies. Annu Rev Biophys Biomol Struct 28:1–27
    Thomas GS (1977) Laser Raman scattering as a probe of protein structure. Ann Rev Biochem 46:553–557
    Trauger SA, Webb W, Suizdak G (2002) Peptide and protein analysis with mass spectrometry. Spectroscopy 16:15–28
    Tonack S, Neoptolemos JP, Costello E (2010) Analysis of serum proteins by LC-MS/MS. Methods Mol Biol 658:281–291
    Kubota K, Kosaka T, Ichikawa K (2009) Shotgun protein analysis by liquid chromatography-tandem mass spectrometry. Methods Mol Biol 519:483–494
    Wu CC, MacCoss MJ (2002) Shotgun proteomics: tools for the analysis of complex biological systems. Curr Opin Mol Ther 4:242–250
    Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337:1–9
    Vodisch M, Scherlach K, Winkler R, Hertweck C, Braun HP, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O (2011) Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J Proteome Res 10:2508–2524
    Adav SS, Chao LT, Sze SK (2012) Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol Cell Proteomics 11:1
    Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De la Fuente G, Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21:213–9
    Sutherland JB, Pometto AL, Crawford DL (1983) Lignocellulose degradation by Fusarium species. Can J Bot 61:1194–8
    Edwards KJ, Gihring TM, Banfield JF (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632
    Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Biores Tech 84:187–9
    Krishna P, Reddy MS, Patnaik SK (2005) Aspergillus tubingensis reduces the pH of the bauxite residue (red mud) amended soils. Water Air Soil Poll 167:201–9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021