Exportar registro bibliográfico


Metrics:

Deletion of the single UreG urease activation gene in soybean NIL lines: characterization and pleiotropic effects (2016)

  • Authors:
  • USP affiliated authors: FAVARIN, JOSÉ LAERCIO - ESALQ ; MAZZAFERA, PAULO - ESALQ ; TEZOTTO, TIAGO - ESALQ
  • Unidade: ESALQ
  • DOI: 10.1007/s40626-016-0052-z
  • Subjects: SOJA; UREIA; GENES; MUTAÇÃO GENÉTICA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s40626-016-0052-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      TEZOTTO, Tiago; SOUZA, Sarah Caroline Ribeiro; MIHAIL, Jeanne; et al. Deletion of the single UreG urease activation gene in soybean NIL lines: characterization and pleiotropic effects. Theoretical and Experimental Plant Physiology, Heidelberg, Springer Nature, v. 28, n. 3, p. 307-320, 2016. Disponível em: < http://dx.doi.org10.1007/s40626-016-0052-z > DOI: 10.1007/s40626-016-0052-z.
    • APA

      Tezotto, T., Souza, S. C. R., Mihail, J., Favarin, J. L., Mazzafera, P., Bilyeu, K., & Polacco, J. C. (2016). Deletion of the single UreG urease activation gene in soybean NIL lines: characterization and pleiotropic effects. Theoretical and Experimental Plant Physiology, 28( 3), 307-320. doi:10.1007/s40626-016-0052-z
    • NLM

      Tezotto T, Souza SCR, Mihail J, Favarin JL, Mazzafera P, Bilyeu K, Polacco JC. Deletion of the single UreG urease activation gene in soybean NIL lines: characterization and pleiotropic effects [Internet]. Theoretical and Experimental Plant Physiology. 2016 ; 28( 3): 307-320.Available from: http://dx.doi.org10.1007/s40626-016-0052-z
    • Vancouver

      Tezotto T, Souza SCR, Mihail J, Favarin JL, Mazzafera P, Bilyeu K, Polacco JC. Deletion of the single UreG urease activation gene in soybean NIL lines: characterization and pleiotropic effects [Internet]. Theoretical and Experimental Plant Physiology. 2016 ; 28( 3): 307-320.Available from: http://dx.doi.org10.1007/s40626-016-0052-z

    Referências citadas na obra
    Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol 140:433–443
    Becker-Ritt AB, Carlini CR (2012) Fungitoxic and insecticidal plant polypeptides. Pept Sci 98:367–384
    Bielesk RL, Turner NA (1966) Separation and estimation of amino acids in crude plant extracts by thin layer electrophoresis and chromatography. Anal Biochem 17:278–282
    Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142–152
    Brown PH, Welch RM, Cary EE (1987a) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803
    Brown PH, Welch RM, Cary EE, Checkai RT (1987b) Beneficial effects of nickel on plant growth. J Plant Nutr 10:2125–2135
    Carlini CR, Polacco JC (2008) Toxic properties of urease. Crop Sci 48:1665–1672
    Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts M, Lammel J, Broadley MR (2011) Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci Rep 1:72
    Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ (2013) Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiol 163:1859–1867
    Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) A metalloenzyme. A simple biological role for nickel. J Am Chem Soc 97:4131–4133
    Eskew DL, Welch RM, Cary EE (1983) Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222:621–623
    Fabiano C, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754
    Freyermuth SK, Bacanamwo M, Polacco JC (2000) The soybean Eu3 gene encodes a Ni-binding protein necessary for urease activity. Plant J 21:53–60
    Goldraij A, Polacco JC (1999) Arginase is inoperative in developing soybean seeds. Plant Physiol 119:297–304
    Goldraij A, Beamer LJ, Polacco JC (2003) Interallelic complementation at the ubiquitous urease coding locus of soybean. Plant Physiol 132:1801–1810
    Haden VR, Xiang J, Peng S, Bouman BAM, Visperas R, Ketterings QM, Hobbs P, Duxbury JM (2011) Relative effects of ammonia and nitrite on the germination and early growth of aerobic rice. J Plant Nutr Soil Sci 174:292–300
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil, vol 347. California Agriculture Experimental Station Circular, Berkeley
    Hungria M, Boddey LH, Santos MA, Vargas MAT (1998) Nitrogen fixation capacity and nodule occupancy by Bradyrhizobium japonicum and B. elkanii strains. Biol Fertil Soils 27:393–399
    Karr DB, Waters JK, Suzuki F, Emerich DW (1984) Enzymes of the poly-β-hydroxybutyrate and citric acid cycles of Rhizobium japonicum bacteroids. Plant Physiol 75:1158–1162
    Kloth RH, Polacco JC, Hymowitz T (1987) The inheritance of a urease-null trait in soybeans. Theor Appl Genet 73:410–418
    Kutman BY, Kutman UB, Cakmak I (2012) Nickel-enriched seed and externally supplied nickel improve growth and alleviate foliar urea damage in soybean. Plant Soil 363:61–75
    Lenis J, Gillman J, Lee J, Shannon JG, Bilyeu K (2010) Soybean seed lipoxygenase genes: molecular characterization and development of molecular marker assays. Theor Appl Genet 120:1139–1149
    Martinelli AHS, Kappaun K, Ligabue-Braun R, Defferrari MS, Piovesan AR, Stanisçuaski F, Demartini DR, Dal Belo CA, Almeida CGM, Follmer C, Verli H, Carlini CR, Pasquali G (2014) Structure–function studies on jaburetox, a recombinant insecticidal peptide derived from jack bean (Canavalia ensiformis) urease. Biochim Biophys Acta Gen Subj 1840:935–944
    Medeiros-Silva M, Franck WL, Borba MP, Pizzato SB, Strodtman KN, Emerich DW, Stacey G, Polacco JC, Carlini CR (2014) Soybean ureases, but not that of Bradyrhizobium japonicum, are involved in the process of soybean root nodulation. J Agric Food Chem 62:3517–3524
    Meyer-Bothling LE, Polacco JC (1987) Mutational analysis of the embryo-specific urease locus of soybean. Mol Gen Genet 209:439–444
    Mokochinski JB, Soares DX, Bruns RE, Mazzafera P, Sawaya ACHF (2013) Optimization of extraction conditions of free amino acids in plants by factorial design. In: Congresso Brasileiro de Espectrometria de Massas. 7–11 December 2013, Campinas
    Mulinari F, Becker-Ritt AB, Demartini DR, Ligabue-Braun R, Stanisçuaski F, Verli H, Fragoso RR, Schroeder EK, Carlini CR, Grossi-de-Sá MF (2011) Characterization of JBURE-IIb isoform of Canavalia ensiformis (L.) DC urease. Biochim Biophys Acta 12:1758–1768
    Mustafiz A, Ghosh A, Tripathi AK, Kaur C, Ganguly AK, Bhavesh NS, Tripathi JK, Pareek A, Sopory SK, Singla-Pareek SL (2014) A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalaseI possesses a single active site and functions in abiotic stress response. Plant J 78:951–963
    Nelson RS, Streit L, Harper JE (1984) Biochemical characterization of nitrate and nitrite reduction in the wild-type and a nitrate reductase mutant of soybean. Physiol Plant 61:384–390
    Nicholas JC, Harper JE, Hageman RH (1976) Nitrate reductase activity in soybeans (Glycine max [L.] Merr.): I. effects of light and temperature. Plant Physiol 58:731–735
    Polacco JC, Freyermuth SK, Gerendás J, Cianzio SR (1999) Soybean genes involved in nickel insertion into urease. J Exp Bot 50:1149–1156
    Polacco JC, Hyten DL, Medeiros-Silva M, Sleper DA, Bilyeu KD (2011) Mutational analysis of the major soybean UreF paralogue involved in urease activation. J Exp Bot 62:3599–3608
    Polacco JC, Mazzafera P, Tezotto T (2013) Opinion—nickel and urease in plants: still many knowledge gaps. Plant Sci 199–200:79–90
    Postal M, Martinelli AHS, Becker-Ritt AB, Ligabue-Braun R, Demartini DR, Ribeiro SFF, Pasquali G, Gomes VM, Carlini CR (2012) Antifungal properties of Canavalia ensiformis urease and derived peptides. Peptides 38:22–32
    Ryan SA, Harper JE (1983) Mutagenesis of soybeans. Soybean Genet Newslett 10:29–32
    Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183
    Sega GA (1984) A review of the genetic effects of ethyl methanesulfonate. Mutat Res/Rev Gen Toxicol 134:113–142
    Stebbins N, Holland MA, Cianzio SR, Polacco JC (1991) Genetic tests of the roles of the embryonic ureases of soybean. Plant Physiol 97:1004–1010
    Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530
    Torisky RS, Griffin JD, Yenofsky RL, Polacco JC (1994) A single gene (Eu4) encodes the tissue-ubiquitous urease of soybean. Mol Gen Genet 242:404–414
    Wernitznig S, Adlassnig W, Sprocati AR, Turnau K, Neagoe A, Alisi C, Sassmann S, Nicoara A, Pinto V, Cremisini C, Lichtscheidl I (2014) Plant growth promotion by inoculation with selected bacterial strains versus mineral soil supplements. Environ Sci Pollut Res 21:6877–6887
    Wiebke-Strohm B, Pasquali G, Margis-Pinheiro M, Bencke M, Bücker-Neto L, Becker-Ritt A, Martinelli AS, Rechenmacher C, Polacco J, Stolf R, Marcelino F, Abdelnoor R, Homrich M, Del Ponte E, Carlini C, De Carvalho MCG, Bodanese-Zanettini M (2012) Ubiquitous urease affects soybean susceptibility to fungi. Plant Mol Biol 79:75–87
    Witte C-P (2011) Urea metabolism in plants. Plant Sci 180:431–438
    Wood BW, Reilly CC, Nyezepir AP (2004) Mouse-ear of pecan: a nickel deficiency. HortScience 39:1238–1242
    Zhang JX, Xue AG, Cober ER, Morrison MJ, Zhang HJ, Zhang SZ, Gregorich E (2013) Prevalence, pathogenicity and cultivar resistance of Fusarium and Rhizoctonia species causing soybean root rot. Can J Plant Sci 93:221–236

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021