A partial differential equation with delayed diffusion (2007)
- Authors:
- Autor USP: RODRIGUES, HILDEBRANDO MUNHOZ - ICMC
- Unidade: ICMC
- Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS; TEORIA ASSINTÓTICA; EQUAÇÕES DIFERENCIAIS FUNCIONAIS
- Keywords: delay diffusion; separation of invariant manifolds; semigroup on Frechét spaces
- Language: Inglês
- Imprenta:
- Source:
- Título: Dynamics of Continuous Discrete and Impulsive Systems : Series A : Mathematical Analysis
- ISSN: 1201-3390
- Volume/Número/Paginação/Ano: v. 14, n. 5, p. 731-737, 2016
-
ABNT
RODRIGUES, Hildebrando Munhoz e OU, Chunhua e WU, Jianhong. A partial differential equation with delayed diffusion. Dynamics of Continuous Discrete and Impulsive Systems : Series A : Mathematical Analysis, v. 14, n. 5, p. 731-737, 2007Tradução . . Acesso em: 01 fev. 2026. -
APA
Rodrigues, H. M., Ou, C., & Wu, J. (2007). A partial differential equation with delayed diffusion. Dynamics of Continuous Discrete and Impulsive Systems : Series A : Mathematical Analysis, 14( 5), 731-737. -
NLM
Rodrigues HM, Ou C, Wu J. A partial differential equation with delayed diffusion. Dynamics of Continuous Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2007 ; 14( 5): 731-737.[citado 2026 fev. 01 ] -
Vancouver
Rodrigues HM, Ou C, Wu J. A partial differential equation with delayed diffusion. Dynamics of Continuous Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2007 ; 14( 5): 731-737.[citado 2026 fev. 01 ] - Applications of robust synchronization to communication systems
- Differentiability with respect to parameters in global smooth linearization
- Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable
- On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
- Criterio de wall
- Periodic solutions of forced nonlinear second order equations symmetry and bifurcations
- Uniform dissipativeness and synchronization on nonautonomous equation
- Symmetry and bifurcation to 2pi / m- periodic solutions of nonlinear second order equations with 2pi / m-periodic forcings
- On harmonic and subharmonic solutions of nonlinear second order equations: symmetry and bifurcation
- Relative asymptotic equivalence of evolution equations
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
