Exportar registro bibliográfico


Metrics:

Two new defective distributions based on the Marshall–Olkin extension (2016)

  • Authors:
  • Autor USP: LOUZADA NETO, FRANCISCO - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s10985-015-9328-x
  • Subjects: INFERÊNCIA BAYESIANA; ESTATÍSTICA APLICADA
  • Keywords: Cure fraction; Defective models; Gompertz distribution; Inverse Gaussian distribution; Marshall–Olkin Family
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10985-015-9328-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ROCHA, Ricardo; NADARAJAH, Saralees; TOMAZELLA, Vera; LOUZADA, Francisco. Two new defective distributions based on the Marshall–Olkin extension. Lifetime Data Analysis, Heidelberg, Springer, v. 22, n. 2, p. 216-240, 2016. Disponível em: < http://dx.doi.org/10.1007/s10985-015-9328-x > DOI: 10.1007/s10985-015-9328-x.
    • APA

      Rocha, R., Nadarajah, S., Tomazella, V., & Louzada, F. (2016). Two new defective distributions based on the Marshall–Olkin extension. Lifetime Data Analysis, 22( 2), 216-240. doi:10.1007/s10985-015-9328-x
    • NLM

      Rocha R, Nadarajah S, Tomazella V, Louzada F. Two new defective distributions based on the Marshall–Olkin extension [Internet]. Lifetime Data Analysis. 2016 ; 22( 2): 216-240.Available from: http://dx.doi.org/10.1007/s10985-015-9328-x
    • Vancouver

      Rocha R, Nadarajah S, Tomazella V, Louzada F. Two new defective distributions based on the Marshall–Olkin extension [Internet]. Lifetime Data Analysis. 2016 ; 22( 2): 216-240.Available from: http://dx.doi.org/10.1007/s10985-015-9328-x

    Referências citadas na obra
    Aalen O, Borgan O, Gjessing H (2008) Survival and event history analysis: a process point of view. Springer, New York
    Aalen OO, Gjessing HK (2001) Understanding the shape of the hazard rate: a process point of view (with comments and a rejoinder by the authors). Stat Sci 16(1):1–22
    Alice T, Jose KK (2003) Marshall–Olkin pareto processes. Far East J Theor Stat 9(2):117–132
    Alice T, Jose KK (2005) Marshall–Olkin logistic processes. STARS Int J 6:1–11
    Balka J, Desmond AF, McNicholas PD (2009) Review and implementation of cure models based on first hitting times for wiener processes. Lifetime Data Anal 15(2):147–176
    Balka J, Desmond AF, McNicholas PD (2011) Bayesian and likelihood inference for cure rates based on defective inverse gaussian regression models. J Appl Stat 38(1):127–144
    Barreto-Souza W, Lemonte AJ, Cordeiro GM (2013) General results for the marshall and olkin’s family of distributions. Anais da Academia Brasileira de Ciências 85(1):3–21
    Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47(259):501–515
    Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B (Methodol) 11(1):15–53
    Cantor AB, Shuster JJ (1992) Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Stat Med 11(7):931–937
    Chen MH, Ibrahim JG, Sinha D (1999) A new bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94(447):909–919
    Cordeiro GM, Lemonte AJ (2013) On the Marshall–Olkin extended weibull distribution. Stat Papers 54(2):333–353
    Gieser PW, Chang MN, Rao PV, Shuster JJ, Pullen J (1998) Modelling cure rates using the gompertz model with covariate information. Stat Med 17(8):831–839
    Haybittle JL (1959) The estimation of the proportion of patients cured after treatment for cancer of the breast. Br J Radiol 32(383):725–733
    Ibrahim JG, Chen MH, Sinha D (2005) Bayesian survival analysis. Wiley Online Library, New York
    Jose KK, Krishna E (2011) Marshall–Olkin extended uniform distribution. Probab Stat Optim 4:78–88
    Kersey JH, Weisdorf D, Nesbit ME, LeBien TW, Woods WG, McGlave PB, Kim T, Vallera DA, Goldman AI, Bostrom B (1987) Comparison of autologous and allogeneic bone marrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia. N Engl J Med 317(8):461–467
    Klein JP, Moeschberger ML (2003) Survival analysis: statistical methods for censored and truncated data. Springer, New York
    Laurie JA, Moertel CG, Fleming TR, Wieand HS, Leigh JE, Rubin J, McCormack GW, Gerstner JB, Krook JE, Malliard J (1989) Surgical adjuvant therapy of large-bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil. the north central cancer treatment group and the mayo clinic. J Clin Oncol 7(10):1447–1456
    Lee MLT, Whitmore GA (2004) First hitting time models for lifetime data. Handb Stat 23:537–543
    Lee MLT, Whitmore GA (2006) Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Stat Sci 21(4):501–513
    Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 84(3):641–652
    R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
    Schrödinger E (1915) Zur theorie der fall-und steigversuche an teilchen mit brownscher bewegung. Phys Z 16:289–295
    Tweedie MCK (1945) Inverse statistical variates. Nature 155(3937):453–453
    Whitmore GA (1979) An inverse gaussian model for labour turnover. J R Stat Soc Ser A (Gener) 142(4):468–478
    Whitmore GA, Crowder MJ, Lawless JF (1998) Failure inference from a marker process based on a bivariate wiener model. Lifetime Data Anal 4(3):229–251
    Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications, vol 1. World Scientific, Singapore

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020