Exportar registro bibliográfico

Propriedades de continuação única para soluções de equações de Schrödinger com interação pontual (2015)

  • Authors:
  • Autor USP: URRIOLA, HECTOR JOSE CABARCAS - IME
  • Unidade: IME
  • Sigla do Departamento: MAT
  • Subjects: ANÁLISE MATEMÁTICA; EQUAÇÕES DIFERENCIAIS; EQUAÇÃO DE SCHRODINGER
  • Agências de fomento:
  • Language: Português
  • Abstract: Neste trabalho, estudamos propriedades de continuação única para as soluções da equação tipo Schrödinger com um ponto interação centrado em x=0, \partial_tu=i(\Delta_Z+V)u, onde V=V(x,t) é uma função de valor real e -\Delta_Z é o operador escrito formalmente como \[-\Delta_Z=-\frac\frac{d^2}{dx^2}+Z\delta_0,\] sendo \delta_0 a delta de Dirac centrada em zero e Z qualquer número real. Logo, usamos estes resultados para ver o possível fenômeno de concentração das soluções, que explodem, da equação de tipo Schrödinger não linear com um ponto de interação em x=0, \[\partial_tu=i(\Delta_Zu+|u|^u),\] com ho>5. Também, mostramos que para certas condições sobre o potencial dependente do tempo V, a equação linear em cima tem soluções não triviais.
  • Imprenta:
  • Data da defesa: 17.08.2015
  • Acesso à fonte
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CABARCAS URRIOLA, Héctor José; PAVA, Jaime Angulo. Propriedades de continuação única para soluções de equações de Schrödinger com interação pontual. 2015.Universidade de São Paulo, São Paulo, 2015. Disponível em: < http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052016-141417 >.
    • APA

      Cabarcas Urriola, H. J., & Pava, J. A. (2015). Propriedades de continuação única para soluções de equações de Schrödinger com interação pontual. Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052016-141417
    • NLM

      Cabarcas Urriola HJ, Pava JA. Propriedades de continuação única para soluções de equações de Schrödinger com interação pontual [Internet]. 2015 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052016-141417
    • Vancouver

      Cabarcas Urriola HJ, Pava JA. Propriedades de continuação única para soluções de equações de Schrödinger com interação pontual [Internet]. 2015 ;Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-20052016-141417

    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI:

    Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021