Exportar registro bibliográfico


Metrics:

Submanifolds with nonpositive extrinsic curvature (2017)

  • Authors:
  • Autor USP: MANFIO, FERNANDO - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s10231-016-0578-3
  • Subjects: GEOMETRIA DIFERENCIAL; GEOMETRIA GLOBAL; GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA
  • Keywords: Nonpositive extrinsic curvature; Cylindrically bounded submanifolds; Otsuki's Lemma; Omori-Yau maximum principle
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10231-016-0578-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CANEVARI, Samuel; FREITAS, Guilherme Machado de; MANFIO, Fernando. Submanifolds with nonpositive extrinsic curvature. Annali di Matematica Pura ed Applicata, Heidelberg, Springer, v. 196, n. 2, p. 407-426, 2017. Disponível em: < http://dx.doi.org/10.1007/s10231-016-0578-3 > DOI: 10.1007/s10231-016-0578-3.
    • APA

      Canevari, S., Freitas, G. M. de, & Manfio, F. (2017). Submanifolds with nonpositive extrinsic curvature. Annali di Matematica Pura ed Applicata, 196( 2), 407-426. doi:10.1007/s10231-016-0578-3
    • NLM

      Canevari S, Freitas GM de, Manfio F. Submanifolds with nonpositive extrinsic curvature [Internet]. Annali di Matematica Pura ed Applicata. 2017 ; 196( 2): 407-426.Available from: http://dx.doi.org/10.1007/s10231-016-0578-3
    • Vancouver

      Canevari S, Freitas GM de, Manfio F. Submanifolds with nonpositive extrinsic curvature [Internet]. Annali di Matematica Pura ed Applicata. 2017 ; 196( 2): 407-426.Available from: http://dx.doi.org/10.1007/s10231-016-0578-3

    Referências citadas na obra
    Albanese, G., Alías, L.J., Rigoli, M.: A general form of the weak maximum principle and some applications. Rev. Mat. Iberoam. 29(4), 1437–1476 (2013)
    Alías, L.J., Bessa, P., Dajczer, M.: The mean curvature of cylindrically bounded submanifolds. Math. Ann. 345(2), 367–376 (2009)
    Alías, L.J., Bessa, P., Fabio Montenegro, J.: An estimate for the sectional curvature of cylindrically bounded submanifolds. Trans. Am. Math. Soc. 364(7), 3513–3528 (2012)
    Chern, S.-S., Kuiper, N.H.: Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space. Ann. Math. 2(56), 422–430 (1952)
    Gromov, M.: Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in mathematics and related areas (3)], vol. 9. Springer, Berlin (1986)
    Jorge, L., Koutroufiotis, D.: An estimate for the curvature of bounded submanifolds. Am. J. Math. 103(4), 711–725 (1981)
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. II. Wiley Classics Library. Wiley, New York (1996). (Reprint of the 1969 original, A Wiley-Interscience Publication)
    Leung, P.F.: Complete hypersurface of nonpositive Ricci curvature. Bull. Aust. Math. Soc. 27(2), 215–219 (1983)
    Moore, J.D.: An application of second variation to submanifold theory. Duke Math. J. 42, 191–193 (1975)
    Nadirashvili, N.: Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126(3), 457–465 (1996)
    Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn 19, 205–214 (1967)
    O’Neill, B.: Immersion of manifolds of nonpositive curvature. Proc. Am. Math. Soc. 11, 132–134 (1960)
    Ôtsuki, T.: Isometric imbedding of Riemann manifolds in a Riemann manifold. J. Math. Soc. Jpn 6, 221–234 (1954)
    Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. Am. Math. Soc 174(822), x+99 (2005)
    Reilly, R.C.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26(3), 459–472 (1977)
    Schoen, R., Yau, S.-T.: Lectures on differential geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA: Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu. Translated from the Chinese by Ding and S. Y, Cheng, Preface translated from the Chinese by Kaising Tso (1994)
    Smith, G.H.: A note on complete hypersurfaces of nonpositive Ricci curvature. Bull. Aust. Math. Soc. 28(3), 339–342 (1983)
    Smyth, B., Xavier, F.: Efimov’s theorem in dimension greater than two. Invent. Math. 90(3), 443–450 (1987)
    Stiel, E.F.: Immersions into manifolds of constant negative curvature. Proc. Am. Math. Soc. 18, 713–715 (1967)
    Tompkins, C.: Isometric embedding of flat manifolds in Euclidean space. Duke Math. J. 5(1), 58–61 (1939)
    Veeravalli, A.R.: A sharp lower bound for the Ricci curvature of bounded hypersurfaces in space forms. Bull. Aust. Math. Soc. 62(1), 165–170 (2000)
    Yau, S.T.: Submanifolds with constant mean curvature. Am. J. Math 96, 346–366 (1974)
    Yau, S.T.: Submanifolds with constant mean curvature. Am. J. Math 97, 76–100 (1975)
    Yau, S.T. (ed.): Seminar on Differential Geometry, volume 102 of Annals of Mathematics Studies. In Papers presented at seminars held during the academic year 1979–1980. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1982)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020