Symmetry relations in the generalized Lorenz–Mie theory for lossless negative refractive index media (2016)
- Autor:
- Autor USP: AMBROSIO, LEONARDO ANDRÉ - EESC
- Unidade: EESC
- DOI: 10.1016/j.jqsrt.2016.04.019
- Assunto: ENGENHARIA ELÉTRICA
- Language: Inglês
- Imprenta:
- Publisher place: Kidlington, United Kingdom
- Date published: 2016
- Source:
- Título: Journal of Quantitative Spectroscopy & Radiative Transfer
- ISSN: 0022-4073
- Volume/Número/Paginação/Ano: v. 180, p. 147-153, September 2016
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
AMBROSIO, Leonardo André. Symmetry relations in the generalized Lorenz–Mie theory for lossless negative refractive index media. Journal of Quantitative Spectroscopy & Radiative Transfer, v. 180, p. 147-153, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jqsrt.2016.04.019. Acesso em: 26 jan. 2026. -
APA
Ambrosio, L. A. (2016). Symmetry relations in the generalized Lorenz–Mie theory for lossless negative refractive index media. Journal of Quantitative Spectroscopy & Radiative Transfer, 180, 147-153. doi:10.1016/j.jqsrt.2016.04.019 -
NLM
Ambrosio LA. Symmetry relations in the generalized Lorenz–Mie theory for lossless negative refractive index media [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2016 ; 180 147-153.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jqsrt.2016.04.019 -
Vancouver
Ambrosio LA. Symmetry relations in the generalized Lorenz–Mie theory for lossless negative refractive index media [Internet]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2016 ; 180 147-153.[citado 2026 jan. 26 ] Available from: https://doi.org/10.1016/j.jqsrt.2016.04.019 - Experimental optical trapping with frozen waves
- On longitudinal radiation pressure cross-section in the generalized Lorenz–Mie theory and its relationship with the dipole theory of forces
- Extracting metamaterial properties of negative-index and plasmonic scatterers from the mie coefficients
- On the validity of the use of a localized approximation for helical beams: II. Numerical aspects
- On a new type of micrometer-structured non-diffracting wave field: surface beams based on continuous superpositions of zeroth-order bessel beams
- On localized approximations for helical beams
- Analytical description of paraxial higher-order frozen waves in generalized Lorenz-Mie theory: the finite-energy case
- Método simples em óptica de raios para cálculo de forças radiais exercidas por superposições discretas de fiexes de Bessel escalares
- Optical forces experienced by arbitrary-sized spherical scatterers from superpositions of equal-frequency Bessel beams
- Superpositions of equal-frequency ordinary Bessel beams: frozen waves for optical trapping and micromanipulation
Informações sobre o DOI: 10.1016/j.jqsrt.2016.04.019 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
