Exportar registro bibliográfico


Metrics:

Experimental blunt chest trauma – cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study (2016)

  • Authors:
  • Autor USP: AMATO, MARCELO BRITTO PASSOS - FM
  • Unidade: FM
  • DOI: 10.1186/s12871-015-0166-x
  • Subjects: SUÍNOS; ESTUDOS RANDOMIZADOS; TRAUMATISMOS TORÁCICOS; SÍNDROME DO DESCONFORTO RESPIRATÓRIO EM ADULTOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1186/s12871-015-0166-x (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SCHREITER, Dierk; CARVALHO, Nadja C.; KATSCHER, Sebastian; et al. Experimental blunt chest trauma – cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study. BMC Anesthesiology, London, v. 16, p. 13 , 2016. Disponível em: < http://bmcanesthesiol.biomedcentral.com/articles/10.1186/s12871-015-0166-x > DOI: 10.1186/s12871-015-0166-x.
    • APA

      Schreiter, D., Carvalho, N. C., Katscher, S., Mende, L., Reske, A. P., Spieth, P. M., et al. (2016). Experimental blunt chest trauma – cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study. BMC Anesthesiology, 16, 13 . doi:10.1186/s12871-015-0166-x
    • NLM

      Schreiter D, Carvalho NC, Katscher S, Mende L, Reske AP, Spieth PM, Carvalho AR, Beda A, Lachmann B, Amato MBP, Wrigge H, Reske AW. Experimental blunt chest trauma – cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study [Internet]. BMC Anesthesiology. 2016 ; 16 13 .Available from: http://bmcanesthesiol.biomedcentral.com/articles/10.1186/s12871-015-0166-x
    • Vancouver

      Schreiter D, Carvalho NC, Katscher S, Mende L, Reske AP, Spieth PM, Carvalho AR, Beda A, Lachmann B, Amato MBP, Wrigge H, Reske AW. Experimental blunt chest trauma – cardiorespiratory effects of different mechanical ventilation strategies with high positive end-expiratory pressure: a randomized controlled study [Internet]. BMC Anesthesiology. 2016 ; 16 13 .Available from: http://bmcanesthesiol.biomedcentral.com/articles/10.1186/s12871-015-0166-x

    Referências citadas na obra
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.
    Carvalho CR, Barbas CS, Medeiros DM, Magaldi RB, Lorenzi Filho G, Kairalla RA, et al. Temporal hemodynamic effects of permissive hypercapnia associated with ideal PEEP in ARDS. Am J Respir Crit Care Med. 1997;156:1458–66.
    Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma. 2003;54:312–9.
    Johannigman JA, Miller SL, Davis BR, Davis K, Campbell RS, Branson RD. Influence of low tidal volumes on gas exchange in acute respiratory distress syndrome and the role of recruitment maneuvers. J Trauma. 2003;54:320–5.
    Schreiter D, Reske A, Stichert B, Seiwerts M, Bohm SH, Kloeppel R, et al. Alveolar recruitment in combination with sufficient positive end-expiratory pressure increases oxygenation and lung aeration in patients with severe chest trauma. Crit Care Med. 2004;32:968–75.
    McKinley BA, Kozar RA, Cocanour CS, Valdivia A, Sailors RM, Ware DN, et al. Normal versus supranormal oxygen delivery goals in shock resuscitation: the response is the same. J Trauma. 2002;53:825–32.
    Bein T, Reber A, Metz C, Jauch KW, Hedenstierna G. Acute effects of continuous rotational therapy on ventilation-perfusion inequality in lung injury. Intensive Care Med. 1998;24:132–7.
    Davis K, Johannigman JA, Campbell RS, Marraccini A, Luchette FA, Frame SB, et al. The acute effects of body position strategies and respiratory therapy in paralyzed patients with acute lung injury. Crit Care. 2001;5:81–7.
    Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9.
    Forster N, Engelhard K. Managing elevated intracranial pressure. Curr Opin Anaesthesiol. 2004;17:371–6.
    Davenport R. Pathogenesis of acute traumatic coagulopathy. Transfusion. 2013;53 Suppl 1:23S–7S.
    Mascia L, Zavala E, Bosma K, Pasero D, Decaroli D, Andrews P, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35:1815–20.
    Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma. 2003;55:106–11.
    Salim A, Martin M, Brown C, Inaba K, Browder T, Rhee P, et al. The presence of the adult respiratory distress syndrome does not worsen mortality or discharge disability in blunt trauma patients with severe traumatic brain injury. Injury. 2008;39:30–5.
    Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69:501–10. discussion 511.
    Andrews PL, Shiber JR, Jaruga-Killeen E, Roy S, Sadowitz B, O’Toole RV, et al. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: A systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013;75:635–41.
    Probst C, Pape H-C, Hildebrand F, Regel G, Mahlke L, Giannoudis P, et al. 30 years of polytrauma care: An analysis of the change in strategies and results of 4849 cases treated at a single institution. Injury. 2009;40:77–83.
    Lachmann B, Jonson B, Lindroth M, Robertson B. Modes of artificial ventilation in severe respiratory distress syndrome. Lung function and morphology in rabbits after wash-out of alveolar surfactant. Crit Care Med. 1982;10:724–32.
    Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319–21.
    Papadakos PJ, Lachmann B. The Open Lung Concept of Mechanical Ventilation: The Role of Recruitment and Stabilization. Crit Care Clin. 2007;23(2):241–50.
    Reske A, Seiwerts M, Reske A, Gottschaldt U, Schreiter D. Early recovery from post-traumatic acute respiratory distress syndrome. Clin Physiol Funct Imaging. 2006;26:376–9.
    Sjöstrand UH, Lichtwarck-Aschoff M, Nielsen JB, Markström A, Larsson A, Svensson BA, et al. Different ventilatory approaches to keep the lung open. Intensive Care Med. 1995;21:310–8.
    Dongelmans DA, Paulus F, Veelo DP, Binnekade JM, Vroom MB, Schultz MJ. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept. Anesthesiology. 2011;114:1138–43.
    Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33:S228–40.
    Mercat A, Titiriga M, Anguel N, Richard C, Teboul JL. Inverse ratio ventilation (I/E = 2/1) in acute respiratory distress syndrome: a six-hour controlled study. Am J Respir Crit Care Med. 1997;155:1637–42.
    Whitwam JG. Functional dead space during high frequency ventilation. Eur J Anaesthesiol. 1984;1:7–9.
    Syring RS, Otto CM, Spivack RE, Markstaller K, Baumgardner JE. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J Appl Physiol. 2007;102:331–9.
    Institute of Laboratory Animal Resources C on LS: No Title. Inst Lab Anim Resour Comm Life Sci Natl Res Counc http://www.nap.edu/read/5140/chapter/1 ] Natl Acad Press Washington, DC 2004.
    Pesenti A, Riboni A, Marcolin R, Gattinoni L. Venous admixture (Qva/Q) and true shunt (Qs/Qt) in ARF patients: effects of PEEP at constant FIO2. Intensive Care Med. 1983;9:307–11.
    Hellinger A, Konerding MA, Malkusch W, Obertacke U, Redl H, Bruch J, et al. Does lung contusion affect both the traumatized and the noninjured lung parenchyma? A morphological and morphometric study in the pig. J Trauma. 1995;39:712–9.
    Obertacke U, Neudeck F, Majetschak M, Hellinger A, Kleinschmidt C, Schade FU, et al. Local and systemic reactions after lung contusion: an experimental study in the pig. Shock. 1998;10:7–12.
    Cohn SM, Zieg PM. Experimental pulmonary contusion: review of the literature and description of a new porcine model. J Trauma. 1996;41:565–71.
    Melton SM, Davis KA, Moomey CB, Fabian TC, Proctor KG. Mediator-dependent secondary injury after unilateral blunt thoracic trauma. Shock. 1999;11:396–402.
    Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G. Prevention of atelectasis during general anaesthesia. Lancet. 1995;345:1387–91.
    Vieira SR, Puybasset L, Lu Q, Richecoeur J, Cluzel P, Coriat P, et al. A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1612–23.
    Suarez-Sipmann F, Böhm SH, Tusman G, Pesch T, Thamm O, Reissmann H, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35:214–21.
    Amato MB, Barbas CS, Medeiros DM, Schettino GDP, Lorenzi Filho G, Kairalla RA, et al. Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med. 1995;152:1835–46.
    Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–8.
    Borges JB, Okamoto VN, Matos GFJ, Caramez MPR, Arantes PR, Barros F, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174:268–78.
    Reske AW, EL Costa V, Reske AP, Rau A, Borges JB, Beraldo MA, et al. Bedside estimation of nonaerated lung tissue using blood gas analysis. Crit Care Med. 2013;41:732–43.
    Reske AW, Busse H, Amato MBP, Jaekel M, Kahn T, Schwarzkopf P, et al. Image reconstruction affects computer tomographic assessment of lung hyperinflation. Intensive Care Med. 2008;34:2044–53.
    Spieth PM, Knels L, Kasper M, Domingues Quelhas A, Wiedemann B, Lupp A, et al. Effects of vaporized perfluorohexane and partial liquid ventilation on regional distribution of alveolar damage in experimental lung injury. Intensive Care Med. 2007;33:308–14.
    Quintel M, Heine M, Hirschl RB, Tillmanns R, Wessendorf V. Effects of partial liquid ventilation on lung injury in a model of acute respiratory failure: a histologic and morphometric analysis. Crit Care Med. 1998;26:833–43.
    Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.
    Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–6.
    Batchinsky AI, Jordan BS, Regn D, Necsoiu C, Federspiel WJ, Morris MJ, et al. Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med. 2011;39:1382–7.
    Aufmkolk M, Fischer R, Voggenreiter G, Kleinschmidt C, Schmit-Neuerburg KP, Obertacke U. Local effect of lung contusion on lung surfactant composition in multiple trauma patients. Crit Care Med. 1999;27:1441–6.
    Raghavendran K, Davidson BA, Hutson AD, Helinski JD, Nodzo SR, Notter RH, et al. Predictive modeling and inflammatory biomarkers in rats with lung contusion and gastric aspiration. J Trauma. 2009;67:1182–90.
    Van Kaam AH, Lachmann RA, Herting E, De Jaegere A, van Iwaarden F, Noorduyn LA, et al. Reducing atelectasis attenuates bacterial growth and translocation in experimental pneumonia. Am J Respir Crit Care Med. 2004;169:1046–53.
    Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–6.
    Patroniti N, Pesenti A. Low tidal volume, high respiratory rate and auto-PEEP: the importance of the basics. Crit Care. 2003;7:105–6.
    Vieillard-Baron A, Prin S, Augarde R, Desfonds P, Page B, Beauchet A, et al. Increasing respiratory rate to improve CO2 clearance during mechanical ventilation is not a panacea in acute respiratory failure. Crit Care Med. 2002;30:1407–12.
    De Durante G, Del Turco M, Rustichini L, Cosimini P, Giunta F, Hudson LD, et al. ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165:1271–4.
    Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med. 2005;31:776–84.
    Koh W-J, Suh GY, Han J, Lee S-H, Kang EH, Chung MP, et al. Recruitment maneuvers attenuate repeated derecruitment-associated lung injury. Crit Care Med. 2005;33:1070–6.
    McCarthy MC, Cline AL, Lemmon GW, Peoples JB. Pressure control inverse ratio ventilation in the treatment of adult respiratory distress syndrome in patients with blunt chest trauma. Am Surg. 1999;65:1027–30.
    Davis DP. Early ventilation in traumatic brain injury. Resuscitation. 2008;76:333–40.
    Mekontso Dessap A, Charron C, Devaquet J, Aboab J, Jardin F, Brochard L, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.
    Wexler HR, Lok P. A simple formula for adjusting arterial carbon dioxide tension. Can Anaesth Soc J. 1981;28:370–2.
    Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178:1156–63.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021