IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform (2015)
- Authors:
- Autor USP: MIRANDA, PAULO ANDRE VECHIATTO DE - IME
- Unidade: IME
- DOI: 10.1109/SIBGRAPI.2015.20
- Subjects: PROCESSAMENTO DE IMAGENS; COMPUTAÇÃO GRÁFICA; VISÃO COMPUTACIONAL
- Keywords: unsupervised segmentation; simple Linear iterative clustering; image foresting transform; superpixel; image segmentation; transforms; clustering algorithms; vegetation; accuracy; image color analysis; shape
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2015
- Source:
- Título: Proceedings
- Conference titles: Conference on Graphics, Patterns and Images - SIBGRAPI 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ALEXANDRE, Eduardo Barreto et al. IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform. 2015, Anais.. Piscataway: IEEE, 2015. Disponível em: https://doi.org/10.1109/SIBGRAPI.2015.20. Acesso em: 20 fev. 2026. -
APA
Alexandre, E. B., Chowdhury, A. S., Falcão, A. X., & Miranda, P. A. V. de. (2015). IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform. In Proceedings. Piscataway: IEEE. doi:10.1109/SIBGRAPI.2015.20 -
NLM
Alexandre EB, Chowdhury AS, Falcão AX, Miranda PAV de. IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform [Internet]. Proceedings. 2015 ;[citado 2026 fev. 20 ] Available from: https://doi.org/10.1109/SIBGRAPI.2015.20 -
Vancouver
Alexandre EB, Chowdhury AS, Falcão AX, Miranda PAV de. IFT-SLIC: a general framework for superpixel generation based on simple linear iterative clustering and image foresting transform [Internet]. Proceedings. 2015 ;[citado 2026 fev. 20 ] Available from: https://doi.org/10.1109/SIBGRAPI.2015.20 - Towards interactive image segmentation by dynamic and iterative spanning forest
- GPU-based iterative relative fuzzy connectedness image segmentation
- Oriented relative fuzzy connectedness: theory, algorithms, and its applications in hybrid image segmentation methods
- Relative fuzzy connectedness on directed graphs and its application in a hybrid method for interactive image segmentation
- Oriented image foresting transform segmentation by seed competition
- Intelligent understanding of user interaction in image segmentation
- Image segmentation by image foresting transform with non-smooth connectivity functions
- Hybrid approaches for interactive image segmentation using the live markers paradigm
- Oriented image foresting transform segmentation with connectivity constraints
- A unifying graph-cut image segmentation framework: algorithms it encompasses and equivalences among them
Informações sobre o DOI: 10.1109/SIBGRAPI.2015.20 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
