Exportar registro bibliográfico


Metrics:

On the Banach-Stone theorem for algebras of holomorphic germs (2017)

  • Authors:
  • Autor USP: VIEIRA, DANIELA MARIZ SILVA - IME
  • Unidade: IME
  • DOI: 10.1007/s13398-016-0289-z
  • Subjects: HOLOMORFIA EM DIMENSÃO INFINITA; ANÁLISE FUNCIONAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s13398-016-0289-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GARCÍA, Domingo; MAESTRE, Manuel; VIEIRA, Daniela Mariz Silva. On the Banach-Stone theorem for algebras of holomorphic germs. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Milan, v. 111, n. 1, p. 223–230, 2017. Disponível em: < http://dx.doi.org/10.1007/s13398-016-0289-z > DOI: 10.1007/s13398-016-0289-z.
    • APA

      García, D., Maestre, M., & Vieira, D. M. S. (2017). On the Banach-Stone theorem for algebras of holomorphic germs. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111( 1), 223–230. doi:10.1007/s13398-016-0289-z
    • NLM

      García D, Maestre M, Vieira DMS. On the Banach-Stone theorem for algebras of holomorphic germs [Internet]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 2017 ; 111( 1): 223–230.Available from: http://dx.doi.org/10.1007/s13398-016-0289-z
    • Vancouver

      García D, Maestre M, Vieira DMS. On the Banach-Stone theorem for algebras of holomorphic germs [Internet]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 2017 ; 111( 1): 223–230.Available from: http://dx.doi.org/10.1007/s13398-016-0289-z

    Referências citadas na obra
    Alencar, R., Aron, R.M., Dineen, S.: A reflexive space of holomorphic functions in infinitely many variables. Proc. Am. Math. Soc. 90(3), 407–411 (1984)
    Aron, R.M., Berner, P.D.: A Hahn-Banach extension theorem for analytic mappings. Bull. Soc. Math. Fr. 106(1), 3–24 (1978)
    Aron, R.M., Cole, B., Gamelin, T.W.: Weak-star continuous analytic functions. Can. J. Math. 4(47), 673–683 (1995)
    Banach, S.: Théorie des opérations linéaires. Warsaw (1932)
    Bierstedt, K.D., Meise, R.: Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to the study of $$({{\cal H}(U)},\tau _{\omega })$$ ( H ( U ) , τ ω ) . In: Barroso, J.A. (ed.) Advances in Holomorphy, North-Holland Math. Stud. vol. 34, pp. 111–178. Amsterdam (1979)
    Carando, D., García, D., Maestre, M.: Homomorphisms and composition operators on algebras of analytic functions of bounded type. Adv. Math. 197, 607–629 (2005)
    Carando, D., Muro, S.: Envelopes of holomorphy and extesion of functions of bounded type. Adv. Math. 229, 2098–2121 (2012)
    Casazza, P.G., Lin, B., Lohman, R.H.: On nonreflexive Banach spaces which contain no $$c_0$$ c 0 or $$\ell _p$$ ℓ p . Can. J. Math., XXXII(6), 1382–1389 (1980)
    Condori, L.O., Lourenço, M.L.: Continuous homomorphisms between topological algebras of holomorphic germs. Rocky Mt. J. Math. 36(5), 1457–1469 (2006)
    Dimant, V., Galindo, P., Maestre, M., Zalduendo, I.: Integral holomorphic functions. Studia Math. 160, 83–99 (2004)
    Dineen, S.: Complex analysis in infinite dimensional spaces. Springer, London (1999)
    Garrido, M.I., Jaramillo, J.A.: Variations on the Banach-Stone theorem. Extracta Math. 17, 351–383 (2002)
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. American Mathematical Society, Providence (1955)
    Mujica, J.: Spaces of germs of holomorphic functions. Adv. Math. Suppl. Stud., vol. 4, pp. 1–41. Academic Press (1979)
    Mujica, J.: Complex analysis in Banach spaces, North-Holland Math. Studies 120. Amsterdam (1986)
    Stone, M.H.: Applications of the theory of Boolean rings to general topology. Trans. Am. Math. Soc. 41, 375–481 (1937)
    Tsirelson, B.: Not every Banach space contains an imbedding of $$\ell _p$$ ℓ p or $$c_0$$ c 0 . Funct. Anal. Appl. 8, 138–141 (1974)
    Vieira, D.M.: Theorems of Banach-Stone type for algebras of holomorphic functions on infinite dimensional spaces. Math. Proc. R. Ir. Acad. 1(106A), 97–113 (2006)
    Vieira, D.M.: Spectra of algebras of holomorphic functions of bounded type. Indag. Math. N. S. 18(2), 269–279 (2007)
    Vieira, D.M.: Polynomial approximation in Banach spaces. J. Math. Anal. Appl. 328(2), 984–994 (2007)
    Zalduendo, I.: A canonical extension for analytic funcions on Banach spaces. Trans. Am. Math. Soc. 320(2), 747–763 (1990)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020