Data heterogeneity consideration in semi-supervised learning (2016)
- Authors:
- Autor USP: LIANG, ZHAO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1016/j.eswa.2015.09.026
- Subjects: REDES COMPLEXAS; APRENDIZADO COMPUTACIONAL
- Language: Inglês
- Imprenta:
- Publisher place: Kidlington
- Date published: 2016
- Source:
- Título: Experts Systems with Applications
- ISSN: 0957-4174
- Volume/Número/Paginação/Ano: v. 45, p. 234-247, 2016
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
ARAÚJO, Bilzã e LIANG, Zhao. Data heterogeneity consideration in semi-supervised learning. Experts Systems with Applications, v. 45, p. 234-247, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.eswa.2015.09.026. Acesso em: 11 jan. 2026. -
APA
Araújo, B., & Liang, Z. (2016). Data heterogeneity consideration in semi-supervised learning. Experts Systems with Applications, 45, 234-247. doi:10.1016/j.eswa.2015.09.026 -
NLM
Araújo B, Liang Z. Data heterogeneity consideration in semi-supervised learning [Internet]. Experts Systems with Applications. 2016 ; 45 234-247.[citado 2026 jan. 11 ] Available from: https://doi.org/10.1016/j.eswa.2015.09.026 -
Vancouver
Araújo B, Liang Z. Data heterogeneity consideration in semi-supervised learning [Internet]. Experts Systems with Applications. 2016 ; 45 234-247.[citado 2026 jan. 11 ] Available from: https://doi.org/10.1016/j.eswa.2015.09.026 - Machine learning via dynamical processes in complex networks
- Semi-supervised learning guided by the modularity measure in complex networks
- Handwritten digits recognition using a high level network-based approach
- On the data classification using complex network entropy
- Caracterização de classes via otimização em redes complexas
- Network-based supervised data classification by using an heuristic of ease of access
- Label propagation through neuronal synchrony
- QK-means: a clustering technique based on community detection and 'capa'-means for deployment of custer head nodes
- Attraction forces based semi-supervised learning
- Features of edge-centric collective dynamics in machine learning tasks
Informações sobre o DOI: 10.1016/j.eswa.2015.09.026 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas