A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems (2015)
- Authors:
- Autor USP: ASADA, EDUARDO NOBUHIRO - EESC
- Unidade: EESC
- DOI: 10.1016/j.neucom.2015.02.090
- Subjects: DISTRIBUIÇÃO DE ENERGIA ELÉTRICA; SISTEMAS MULTIAGENTES; REDES NEURAIS
- Language: Inglês
- Imprenta:
- Source:
- Título: Neurocomputing
- ISSN: 0925-2312
- Volume/Número/Paginação/Ano: v. 170, p. 328-338, Dec. 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SARAIVA, Filipe de Oliveira e BERNARDES, Wellington Maycon Santos e ASADA, Eduardo Nobuhiro. A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems. Neurocomputing, v. 170, p. 328-338, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2015.02.090. Acesso em: 19 fev. 2026. -
APA
Saraiva, F. de O., Bernardes, W. M. S., & Asada, E. N. (2015). A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems. Neurocomputing, 170, 328-338. doi:10.1016/j.neucom.2015.02.090 -
NLM
Saraiva F de O, Bernardes WMS, Asada EN. A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems [Internet]. Neurocomputing. 2015 ; 170 328-338.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.neucom.2015.02.090 -
Vancouver
Saraiva F de O, Bernardes WMS, Asada EN. A framework for classification of non-linear loads in smart grids using artificial neural networks and multi-agent systems [Internet]. Neurocomputing. 2015 ; 170 328-338.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.neucom.2015.02.090 - A heuristic method based on the branch and cut algorithm to the transmission system expansion planning problem
- Decision making in intelligent electrical systems using distributed artificial intelligence and heuristic methods
- A numerical method for finding spanning trees in power system state estimation
- Application of artificial neural networks for discrimination of nonlinear loads
- Multi-agent system for voltage control in distribution systems
- Análise e restauração da observabilidade na estimação de estado trifásica
- The optimal reactive dispatch problem with discrete control variables and limited control adjustments
- Metaheuristic strategies for solving the optimal reactive power dispatch with discrete variables
- Constructive heuristic algorithm in branch-and-bound structure applied to transmission network expansion planning
- Reactive power optimization for loss reduction and voltage profile improvement
Informações sobre o DOI: 10.1016/j.neucom.2015.02.090 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
