On the backward stability of the second barycentric formula for interpolation (2014)
- Authors:
- Autor USP: MASCARENHAS, WALTER FIGUEIREDO - IME
- Unidade: IME
- DOI: 10.14658/pupj-drna-2014-1-1
- Subjects: ANÁLISE NUMÉRICA; INTERPOLAÇÃO; ANÁLISE DE ERROS
- Language: Inglês
- Imprenta:
- Source:
- Título: Dolomites Research Notes on Approximation
- ISSN: 2035-6803
- Volume/Número/Paginação/Ano: v. 7, p. 1-12, 2014
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MASCARENHAS, Walter Figueiredo e CAMARGO, André Pierro de. On the backward stability of the second barycentric formula for interpolation. Dolomites Research Notes on Approximation, v. 7, p. 1-12, 2014Tradução . . Disponível em: https://doi.org/10.14658/pupj-drna-2014-1-1. Acesso em: 14 fev. 2026. -
APA
Mascarenhas, W. F., & Camargo, A. P. de. (2014). On the backward stability of the second barycentric formula for interpolation. Dolomites Research Notes on Approximation, 7, 1-12. doi:10.14658/pupj-drna-2014-1-1 -
NLM
Mascarenhas WF, Camargo AP de. On the backward stability of the second barycentric formula for interpolation [Internet]. Dolomites Research Notes on Approximation. 2014 ; 7 1-12.[citado 2026 fev. 14 ] Available from: https://doi.org/10.14658/pupj-drna-2014-1-1 -
Vancouver
Mascarenhas WF, Camargo AP de. On the backward stability of the second barycentric formula for interpolation [Internet]. Dolomites Research Notes on Approximation. 2014 ; 7 1-12.[citado 2026 fev. 14 ] Available from: https://doi.org/10.14658/pupj-drna-2014-1-1 - A Newton’s method for the continuous quadratic knapsack problem
- The stability of barycentric interpolation at the Chebyshev points of the second kind
- Global estimation of hidden Markov model parameters via interval arithmetic
- Robust Padé approximants may have spurious poles
- The divergence of the BFGS and Gauss Newton methods
- The divergence of the barycentric Padé interpolants
- The stability of extended Floater-Hormann interpolants
- Newton's iterates can converge to non-stationary points
- The regular points of simple functions
- Inference for eigenvalues and eigenvectors of Gaussian symmetric matrices
Informações sobre o DOI: 10.14658/pupj-drna-2014-1-1 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
