On the number of orientations of random graphs with no directed cycles of a given length (2014)
- Authors:
- USP affiliated authors: KOHAYAKAWA, YOSHIHARU - IME ; MOTA, GUILHERME OLIVEIRA - IME ; PARENTE, ROBERTO FREITAS - IME
- Unidade: IME
- Subjects: COMBINATÓRIA; TEORIA DOS GRAFOS; GRAFOS ALEATÓRIOS
- Language: Inglês
- Imprenta:
- Publisher place: San Marcos
- Date published: 2014
- Source:
- Título: Electronic Journal of Combinatorics
- ISSN: 1077-8926
- Volume/Número/Paginação/Ano: v. 21, n. 1, P1.52, 2014
-
ABNT
ALLEN, Peter et al. On the number of orientations of random graphs with no directed cycles of a given length. Electronic Journal of Combinatorics, v. 21, n. 1, 2014Tradução . . Disponível em: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p52/pdf. Acesso em: 04 nov. 2024. -
APA
Allen, P., Kohayakawa, Y., Mota, G. O., & Parente, R. F. (2014). On the number of orientations of random graphs with no directed cycles of a given length. Electronic Journal of Combinatorics, 21( 1). Recuperado de http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p52/pdf -
NLM
Allen P, Kohayakawa Y, Mota GO, Parente RF. On the number of orientations of random graphs with no directed cycles of a given length [Internet]. Electronic Journal of Combinatorics. 2014 ; 21( 1):[citado 2024 nov. 04 ] Available from: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p52/pdf -
Vancouver
Allen P, Kohayakawa Y, Mota GO, Parente RF. On the number of orientations of random graphs with no directed cycles of a given length [Internet]. Electronic Journal of Combinatorics. 2014 ; 21( 1):[citado 2024 nov. 04 ] Available from: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p52/pdf - A note on counting orientations
- A counting lemma for sparse pseudorandom hypergraphs
- Factors in randomly perturbed hypergraphs
- Monochromatic trees in random graphs
- Counting results for sparse pseudorandom hypergraphs I
- The multicolour size-Ramsey number of powers of paths
- The anti-Ramsey threshold of complete graphs
- Covering 3-edge-colored random graphs with monochromatic trees
- Constrained colourings of random graphs
- The size-Ramsey number of powers of bounded degree trees
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas