Optimization models for reaction networks: information divergence, quadratic programming and Kirchhoff’s laws (2014)
- Authors:
- USP affiliated authors: STERN, JULIO MICHAEL - IME ; NAKANO, FÁBIO - EACH
- Unidades: IME; EACH
- DOI: 10.3390/axioms3010109
- Subjects: INFERÊNCIA BAYESIANA; TESTES DE HIPÓTESES; FORMAS QUADRÁTICAS
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
STERN, Julio Michael e NAKANO, Fábio. Optimization models for reaction networks: information divergence, quadratic programming and Kirchhoff’s laws. Axioms, v. 3, n. 1, p. 109-118, 2014Tradução . . Disponível em: https://doi.org/10.3390/axioms3010109. Acesso em: 10 fev. 2026. -
APA
Stern, J. M., & Nakano, F. (2014). Optimization models for reaction networks: information divergence, quadratic programming and Kirchhoff’s laws. Axioms, 3( 1), 109-118. doi:10.3390/axioms3010109 -
NLM
Stern JM, Nakano F. Optimization models for reaction networks: information divergence, quadratic programming and Kirchhoff’s laws [Internet]. Axioms. 2014 ; 3( 1): 109-118.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/axioms3010109 -
Vancouver
Stern JM, Nakano F. Optimization models for reaction networks: information divergence, quadratic programming and Kirchhoff’s laws [Internet]. Axioms. 2014 ; 3( 1): 109-118.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/axioms3010109 - Affinity structure in reaction networks: minimum entropy or power dissipation
- Genuine Bayesian multiallelic significance test for the Hardy-Weinberg equilibrium law
- A model for defined benefit plans
- Hierarchical forecasting with functional trees
- Solver de alto desempenho para problemas na forma angular blocada aninhada
- Um novo modelo para cálculo de probabilidade de paternidade: concepção e implementação
- Hierarchical forecasting with polynomial nets
- Intentional sampling by goal optimization with decoupling by stochastic perturbation
- Intentional sampling by goal optimization with decoupling by stochastic perturbation: why (not) to randomize?
- Application of Bayesian analysis to estimation of parametric distributions of complex survey data under informative sampling
Informações sobre o DOI: 10.3390/axioms3010109 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2488513.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
