Total stability for neutral functional differential equations (1981)
- Authors:
- Autor USP: IZE, ANTONIO FERNANDES - ICMC
- Unidade: ICMC
- Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
- Language: Inglês
- Imprenta:
- Publisher place: Providence
- Date published: 1981
- Source:
- Título: Proceedings of the American Mathematical Society
- ISSN: 0002-9939
- Volume/Número/Paginação/Ano: v. 81, n.3, p. 437-442, mar 1981
-
ABNT
IZÉ, Antonio Fernandes e FREIRIA, A A. Total stability for neutral functional differential equations. Proceedings of the American Mathematical Society, v. 81, n. 3, p. 437-442, 1981Tradução . . Acesso em: 18 fev. 2026. -
APA
Izé, A. F., & Freiria, A. A. (1981). Total stability for neutral functional differential equations. Proceedings of the American Mathematical Society, 81( 3), 437-442. -
NLM
Izé AF, Freiria AA. Total stability for neutral functional differential equations. Proceedings of the American Mathematical Society. 1981 ; 81( 3): 437-442.[citado 2026 fev. 18 ] -
Vancouver
Izé AF, Freiria AA. Total stability for neutral functional differential equations. Proceedings of the American Mathematical Society. 1981 ; 81( 3): 437-442.[citado 2026 fev. 18 ] - Some results on the stability of neutral functional differential equations
- Asymptotically autonomous neutral functional differential equations with time-dependent lag
- Integral stability for functional differential equations of the neutral type
- Conributions to stability of neutral functional differential equations
- Stability of perturbed neutral functional differential equations
- Infinite dimensional extension of theorems of hartman and witner on monotone positive solutions of ordinary differential equations
- Lyapunov numbers for a countable systems of ordinary differential equations
- Lyapunov numbers for a countable system of ordinary differential equations
- Asymptotic behavior and nonoscillation of Volterra integral equations and functional differential equations
- Asymptotic integration of nonlinear systems of ordinary differential equations
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas