Combining Meta-Learning with Multi-Objective Particle Swarm algorithms for SVM parameter selection: an experimental analysis (2012)
- Authors:
- Autor USP: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
- Unidade: ICMC
- DOI: 10.1109/SBRN.2012.12
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: CPS
- Publisher place: Piscataway
- Date published: 2012
- ISBN: 9780769548234
- Source:
- Título: Proceedings
- Conference titles: Brazilian Conference on Neural Networks - SBRN
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MIRANDA, Péricles B. C et al. Combining Meta-Learning with Multi-Objective Particle Swarm algorithms for SVM parameter selection: an experimental analysis. 2012, Anais.. Piscataway: CPS, 2012. Disponível em: https://doi.org/10.1109/SBRN.2012.12. Acesso em: 19 fev. 2026. -
APA
Miranda, P. B. C., Prudêncio, R. B. C., Carvalho, A. C. P. de L. F. de, & Soares, C. (2012). Combining Meta-Learning with Multi-Objective Particle Swarm algorithms for SVM parameter selection: an experimental analysis. In Proceedings. Piscataway: CPS. doi:10.1109/SBRN.2012.12 -
NLM
Miranda PBC, Prudêncio RBC, Carvalho ACP de LF de, Soares C. Combining Meta-Learning with Multi-Objective Particle Swarm algorithms for SVM parameter selection: an experimental analysis [Internet]. Proceedings. 2012 ;[citado 2026 fev. 19 ] Available from: https://doi.org/10.1109/SBRN.2012.12 -
Vancouver
Miranda PBC, Prudêncio RBC, Carvalho ACP de LF de, Soares C. Combining Meta-Learning with Multi-Objective Particle Swarm algorithms for SVM parameter selection: an experimental analysis [Internet]. Proceedings. 2012 ;[citado 2026 fev. 19 ] Available from: https://doi.org/10.1109/SBRN.2012.12 - Gabinete pequeno é destaque de pc itautec
- New data strucutre and spanning forest operators for evolutionay algorithms
- Metalearning for context-aware filtering: selection of tensor factorization algorithms
- Evolutionary tuning of SVM parameter values in multiclass problems
- Dimensionality reduction for the algorithm recommendation problem
- Making data stream classification tree-based ensembles lighter
- A study of biclustering coherence measures for gene expression data
- Anomaly detection through temporal abstractions on intensive care data: position paper
- CF4CF: recommending collaborative filtering algorithms using collaborative filtering
- A machine learning-based approach for prediction of plant protection product deposition
Informações sobre o DOI: 10.1109/SBRN.2012.12 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
