An experimental study of the combination of meta-learning with particle swarm algorithms for SVM parameter selection (2012)
- Authors:
- Autor USP: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-642-31137-6_43
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Springer-Verlag
- Publisher place: Berlin
- Date published: 2012
- Source:
- Título: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 7335, p. 562-575, 2012
- Conference titles: International Conference on Computational Science and its Applications - ICCSA
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MIRANDA, Péricles B. C et al. An experimental study of the combination of meta-learning with particle swarm algorithms for SVM parameter selection. Lecture Notes in Computer Science. Berlin: Springer-Verlag. Disponível em: https://doi.org/10.1007/978-3-642-31137-6_43. Acesso em: 13 fev. 2026. , 2012 -
APA
Miranda, P. B. C., Prudêncio, R. B. C., Carvalho, A. C. P. de L. F. de, & Soares, C. (2012). An experimental study of the combination of meta-learning with particle swarm algorithms for SVM parameter selection. Lecture Notes in Computer Science. Berlin: Springer-Verlag. doi:10.1007/978-3-642-31137-6_43 -
NLM
Miranda PBC, Prudêncio RBC, Carvalho ACP de LF de, Soares C. An experimental study of the combination of meta-learning with particle swarm algorithms for SVM parameter selection [Internet]. Lecture Notes in Computer Science. 2012 ; 7335 562-575.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/978-3-642-31137-6_43 -
Vancouver
Miranda PBC, Prudêncio RBC, Carvalho ACP de LF de, Soares C. An experimental study of the combination of meta-learning with particle swarm algorithms for SVM parameter selection [Internet]. Lecture Notes in Computer Science. 2012 ; 7335 562-575.[citado 2026 fev. 13 ] Available from: https://doi.org/10.1007/978-3-642-31137-6_43 - Gabinete pequeno é destaque de pc itautec
- New data strucutre and spanning forest operators for evolutionay algorithms
- Metalearning for context-aware filtering: selection of tensor factorization algorithms
- Evolutionary tuning of SVM parameter values in multiclass problems
- Dimensionality reduction for the algorithm recommendation problem
- Making data stream classification tree-based ensembles lighter
- A study of biclustering coherence measures for gene expression data
- Anomaly detection through temporal abstractions on intensive care data: position paper
- CF4CF: recommending collaborative filtering algorithms using collaborative filtering
- A machine learning-based approach for prediction of plant protection product deposition
Informações sobre o DOI: 10.1007/978-3-642-31137-6_43 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
