A confidence-based active approach for semi-supervised hierarchical clustering (2011)
- Authors:
- USP affiliated author: REZENDE, SOLANGE OLIVEIRA - ICMC
- School: ICMC
- Subject: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Place of publication: São Carlos
- Date published: 2011
- Source:
- ISSN: 0103-2569
-
ABNT
NOGUEIRA, Bruno Magalhães; JORGE, Alípio; REZENDE, Solange Oliveira. A confidence-based active approach for semi-supervised hierarchical clustering. [S.l: s.n.], 2011. -
APA
Nogueira, B. M., Jorge, A., & Rezende, S. O. (2011). A confidence-based active approach for semi-supervised hierarchical clustering. São Carlos: ICMC-USP. -
NLM
Nogueira BM, Jorge A, Rezende SO. A confidence-based active approach for semi-supervised hierarchical clustering. 2011 ; -
Vancouver
Nogueira BM, Jorge A, Rezende SO. A confidence-based active approach for semi-supervised hierarchical clustering. 2011 ; - A methodology for identifying interesting association rules by combining objective and subjective measures
- Transforming geo-referenced data in contextual information for context-aware recommender systems
- Solving the problem of selecting suitable objective measures by clustering association rules through the measures themselves
- Using topic hierarchies with privileged information to improve context-aware recommender systems
- Named entities as privileged information for hierarchical text clustering
- Fuzzy cluster descriptor extraction for flexible organization of documents
- Selecting Candidate Labels For Hierarchical Document Clusters Using Association Rules
- Latent association rule cluster based model to extract topics for classification and recommendation applications
- Cross-domain aspect extraction for sentiment analysis: a transductive learning approach
- Implementação de taxomanias para regras de associação em um ambiente de pós-processamento. (CDROM)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
Relatórios Técnicos_369... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas