An extinction-survival-type phase transition in the probabilistic cellular automaton p182–q200 (2011)
- Authors:
- USP affiliated authors: OLIVEIRA, MARIO JOSE DE - IF ; MENDONÇA, JOSÉ RICARDO GONÇALVES DE - IF
- Unidade: IF
- DOI: 10.1088/1751-8113/44/15/155001
- Assunto: PROBABILIDADE
- Language: Inglês
- Imprenta:
- Publisher place: Philadelphia
- Date published: 2011
- Source:
- Título: Journal of Physics A
- Volume/Número/Paginação/Ano: v.44, n.15, p. 155001, abr.2011
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MENDONÇA, J R G e OLIVEIRA, Mario José de. An extinction-survival-type phase transition in the probabilistic cellular automaton p182–q200. Journal of Physics A, v. 44, n. 15, p. 155001, 2011Tradução . . Disponível em: https://doi.org/10.1088/1751-8113/44/15/155001. Acesso em: 27 jan. 2026. -
APA
Mendonça, J. R. G., & Oliveira, M. J. de. (2011). An extinction-survival-type phase transition in the probabilistic cellular automaton p182–q200. Journal of Physics A, 44( 15), 155001. doi:10.1088/1751-8113/44/15/155001 -
NLM
Mendonça JRG, Oliveira MJ de. An extinction-survival-type phase transition in the probabilistic cellular automaton p182–q200 [Internet]. Journal of Physics A. 2011 ;44( 15): 155001.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1088/1751-8113/44/15/155001 -
Vancouver
Mendonça JRG, Oliveira MJ de. An extinction-survival-type phase transition in the probabilistic cellular automaton p182–q200 [Internet]. Journal of Physics A. 2011 ;44( 15): 155001.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1088/1751-8113/44/15/155001 - Type-dependent irreversible stochastic spin models for genetic regulatory networks at the level of promotion–inhibition circuitry
- Simply modified GKL density classifiers that reach consensus faster
- A probabilistic cellular automata model for the dynamics of a population driven by logistic growth and weak Allee effect
- Approximate probabilistic cellular automata for the dynamics of single-species populations under discrete logisticlike growth with and without weak Allee effects
- Asymptotic behavior of the length of the longest increasing subsequences of random walks
- Exact eigenspectrum of the symmetric simple exclusion process on the complete, complete bipartite and related graphs
- The inactive–active phase transition in the noisy additive (exclusive-or) probabilistic cellular automaton
- Empirical scaling of the length of the longest increasing subsequences of random walks
- Fluxos sobre grafos e redes complexas
- Sobre alguns processos estocasticos de reação e difusão na rede
Informações sobre o DOI: 10.1088/1751-8113/44/15/155001 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
