The K-harmonics methods and the boun-state spectrum of one-dimensional three-body system (1983)
- Authors:
- Autor USP: MALTA, CORACI PEREIRA - IF
- Unidade: IF
- Assunto: FÍSICA MODERNA
- Language: Inglês
- Imprenta:
-
ABNT
MALTA, Coraci Pereira e COUTINHO, Francisco Antônio Bezerra. The K-harmonics methods and the boun-state spectrum of one-dimensional three-body system. . São Paulo: IFUSP. Disponível em: http://publica-sbi.if.usp.br/PDFs/pd391.pdf. Acesso em: 20 jan. 2026. , 1983 -
APA
Malta, C. P., & Coutinho, F. A. B. (1983). The K-harmonics methods and the boun-state spectrum of one-dimensional three-body system. São Paulo: IFUSP. Recuperado de http://publica-sbi.if.usp.br/PDFs/pd391.pdf -
NLM
Malta CP, Coutinho FAB. The K-harmonics methods and the boun-state spectrum of one-dimensional three-body system [Internet]. 1983 ;[citado 2026 jan. 20 ] Available from: http://publica-sbi.if.usp.br/PDFs/pd391.pdf -
Vancouver
Malta CP, Coutinho FAB. The K-harmonics methods and the boun-state spectrum of one-dimensional three-body system [Internet]. 1983 ;[citado 2026 jan. 20 ] Available from: http://publica-sbi.if.usp.br/PDFs/pd391.pdf - The one-boson exchange potentialand the shell-mode spectra of mass 18 nuclei
- Bifurcations of periodic solutions of non-integrable hamiltonians with two degrees of freedom: numerical and analytical results
- Chaos in two-loop negative feedback systems
- Computational model for heart beat time interval series during meditation
- Quantum signature of a period-doubling bifurcation and scars of periodic orbits
- Quantum signature of a periodic orbit family in a hamiltonian systems
- Resonant helical deformations in nonhomogeneous Kirchhoff filaments
- Elastic properties of nanowires
- Bound-states of n particles, a variational approach
- The Time Dependent Variational description of One-Dimensional inelastic Scattering
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
