Selecting Candidate Labels For Hierarchical Document Clusters Using Association Rules (2010)
- Authors:
- USP affiliated author: REZENDE, SOLANGE OLIVEIRA - ICMC
- School: ICMC
- DOI: 10.1007/978-3-642-16773-7_14
- Subject: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Springer-Verlag
- Place of publication: Heidelberg
- Date published: 2010
- Source:
- Título do periódico: Lecture Notes in Computer Sciences
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 6438, p. 163-176, 2010
- Conference title: Mexican International Conference on Artificial Intelligence - MICAI
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SANTOS, Fabiano Fernandes dos e CARVALHO, Veronica Oliveira de e REZENDE, Solange Oliveira. Selecting Candidate Labels For Hierarchical Document Clusters Using Association Rules. Lecture Notes in Computer Sciences. Heidelberg: Springer-Verlag. Disponível em: http://dx.doi.org/10.1007/978-3-642-16773-7_14. Acesso em: 27 jun. 2022. , 2010 -
APA
Santos, F. F. dos, Carvalho, V. O. de, & Rezende, S. O. (2010). Selecting Candidate Labels For Hierarchical Document Clusters Using Association Rules. Lecture Notes in Computer Sciences. Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-16773-7_14 -
NLM
Santos FF dos, Carvalho VO de, Rezende SO. Selecting Candidate Labels For Hierarchical Document Clusters Using Association Rules [Internet]. Lecture Notes in Computer Sciences. 2010 ; 6438 163-176.[citado 2022 jun. 27 ] Available from: http://dx.doi.org/10.1007/978-3-642-16773-7_14 -
Vancouver
Santos FF dos, Carvalho VO de, Rezende SO. Selecting Candidate Labels For Hierarchical Document Clusters Using Association Rules [Internet]. Lecture Notes in Computer Sciences. 2010 ; 6438 163-176.[citado 2022 jun. 27 ] Available from: http://dx.doi.org/10.1007/978-3-642-16773-7_14 - A methodology for identifying interesting association rules by combining objective and subjective measures
- Transforming geo-referenced data in contextual information for context-aware recommender systems
- Solving the problem of selecting suitable objective measures by clustering association rules through the measures themselves
- Using topic hierarchies with privileged information to improve context-aware recommender systems
- Named entities as privileged information for hierarchical text clustering
- Fuzzy cluster descriptor extraction for flexible organization of documents
- Latent association rule cluster based model to extract topics for classification and recommendation applications
- Cross-domain aspect extraction for sentiment analysis: a transductive learning approach
- Implementação de taxomanias para regras de associação em um ambiente de pós-processamento. (CDROM)
- Generalização de regras de associação usando taxonomias
Informações sobre o DOI: 10.1007/978-3-642-16773-7_14 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas