Nonlinear parabolic problems in thin domains with a highly oscillatory boundary (2010)
- Authors:
- USP affiliated author: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- School: ICMC
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES DIFERENCIAIS FUNCIONAIS; EQUAÇÕES DIFERENCIAIS PARCIAIS; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Place of publication: São Carlos
- Date published: 2010
- Source:
- ISSN: 0103-2577
-
ABNT
ARRIETA, José M. et al. Nonlinear parabolic problems in thin domains with a highly oscillatory boundary. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/992d5b63-6225-4d51-a7fb-a80cd23111b3/2129580.pdf. Acesso em: 27 jun. 2022. , 2010 -
APA
Arrieta, J. M., Carvalho, A. N. de, Pereira, M. C., & Silva, R. P. (2010). Nonlinear parabolic problems in thin domains with a highly oscillatory boundary. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/992d5b63-6225-4d51-a7fb-a80cd23111b3/2129580.pdf -
NLM
Arrieta JM, Carvalho AN de, Pereira MC, Silva RP. Nonlinear parabolic problems in thin domains with a highly oscillatory boundary [Internet]. 2010 ;[citado 2022 jun. 27 ] Available from: https://repositorio.usp.br/directbitstream/992d5b63-6225-4d51-a7fb-a80cd23111b3/2129580.pdf -
Vancouver
Arrieta JM, Carvalho AN de, Pereira MC, Silva RP. Nonlinear parabolic problems in thin domains with a highly oscillatory boundary [Internet]. 2010 ;[citado 2022 jun. 27 ] Available from: https://repositorio.usp.br/directbitstream/992d5b63-6225-4d51-a7fb-a80cd23111b3/2129580.pdf - A general approximation scheme for attractors of abstract parabolic problems with hyperbolic equilibrium points
- Characterization of non-autonomous attractors
- An extension of the concept of gradient systems which is stable under perturbation
- Singularity non-autonomous semilinear parabolic problems with critical exponents and applications
- A gradient-like non-autonomous evolution process
- Continuity of dynamical structures for non-autonomous evolution equations under singular perturbations
- Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations
- Continuity of attractors for a semilinear wave equation with variable coefficients
- Pullback exponential attractors for evolution processes in Banach spaces
- Skew product semiflows and Morse decomposition
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2129580.pdf | Direct link | ||
2129580.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas