Darbouxian integrabililty for polynomial vector fields on the 2-dimensional sphere (2002)
- Authors:
- Autor USP: VIDALON, CARLOS TEOBALDO GUTIERREZ - ICMC
- Unidade: ICMC
- Subjects: SISTEMAS DINÂMICOS; TEORIA ERGÓDICA; FOLHEAÇÕES
- Language: Inglês
- Imprenta:
- Source:
- Título: Extracta Mathematicae
- ISSN: 0213-8743
- Volume/Número/Paginação/Ano: v. 17, n. 2, p. 289-301, 20023
-
ABNT
VIDALON, Carlos Teobaldo Gutierrez e LLIBRE, Jaume. Darbouxian integrabililty for polynomial vector fields on the 2-dimensional sphere. Extracta Mathematicae, v. 17, n. 2, p. 289-301, 2002Tradução . . Disponível em: http://www.unex.es/extracta/index.html. Acesso em: 10 jan. 2026. -
APA
Vidalon, C. T. G., & Llibre, J. (2002). Darbouxian integrabililty for polynomial vector fields on the 2-dimensional sphere. Extracta Mathematicae, 17( 2), 289-301. Recuperado de http://www.unex.es/extracta/index.html -
NLM
Vidalon CTG, Llibre J. Darbouxian integrabililty for polynomial vector fields on the 2-dimensional sphere [Internet]. Extracta Mathematicae. 2002 ; 17( 2): 289-301.[citado 2026 jan. 10 ] Available from: http://www.unex.es/extracta/index.html -
Vancouver
Vidalon CTG, Llibre J. Darbouxian integrabililty for polynomial vector fields on the 2-dimensional sphere [Internet]. Extracta Mathematicae. 2002 ; 17( 2): 289-301.[citado 2026 jan. 10 ] Available from: http://www.unex.es/extracta/index.html - On nonsingular polynomial maps of `RPOT.2´
- Dynamic and ergodic properties of interval exchange transformations, an introduction
- Injectivity of 'C POT. 1' maps 'R POT. 2' 'SETA' 'R POT. 2' at infinity and planar vector fields
- A class of topological foliations S'pot.2' that are topologically equivalent to polynomial vector fields
- Planar embeddings with a globally attracting fixed point
- Quartic differential forms and transversal nets with singularities
- Global asymptotic stability for differentiable vector fields of R2
- Ovaloids of R³ and their umbilics: a differential equation approach
- On the 'c pot.r'-closing lemma
- Simple umbilic points on surfaces immersed in 'R POT.4'
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas